1
|
Xie C, Yang R, Wan X, Li H, Ge L, Li X, Zhao G. A Novel Nanofiber Hydrogel Adhesive Based on Carboxymethyl Cellulose Modified by Adenine and Thymine. Polymers (Basel) 2024; 16:1008. [PMID: 38611265 PMCID: PMC11013687 DOI: 10.3390/polym16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Natural polymer-based adhesive hydrogels have garnered significant interest for their outstanding strength and versatile applications, in addition to being eco-friendly. However, the adhesive capabilities of purely natural products are suboptimal, which hampers their practical use. To address this, we engineered carboxymethyl cellulose (CMC) surfaces with complementary bases, adenine (A) and thymine (T), to facilitate the self-assembly of adhesive hydrogels (CMC-AT) with a nanofiber configuration. Impressively, the shear adhesive strength reached up to 6.49 MPa with a mere 2% adhesive concentration. Building upon this innovation, we conducted a comparative analysis of the shear adhesion properties between CMC and CMC-AT hydrogel adhesives when applied to delignified and non-delignified wood chips. We examined the interplay between the adhesives and the substrate, as well as the role of mechanical interlocking in overall adhesion performance. Our findings offer a fresh perspective on the development of new biodegradable polymer hydrogel adhesives.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Runde Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Xing Wan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Haorong Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Liangyao Ge
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| |
Collapse
|
2
|
Sun H, Barboza-Ramos I, Wang X, Schanze KS. Phosphonium-Substituted Conjugated Polyelectrolytes Display Efficient Visible-Light-Induced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38265208 DOI: 10.1021/acsami.3c16335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We report the light-activated antibacterial activity of a new class of phosphonium (R-PMe3+)-substituted conjugated polyelectrolytes (CPEs). These polyelectrolytes feature a poly(phenylene ethynylene) (PPE) conjugated backbone substituted with side groups with the structure -O-(CH2)nPMe3+, where n = 3 or 6. The length of the side groups has an effect on the hydrophobic character of the CPEs and their propensity to interact with bacterial membranes. In a separate study, these phosphonium-substituted PPE CPEs were demonstrated to photosensitize singlet oxygen (1O2) and reactive oxygen species, a key factor for the photoinduced inactivation of bacteria. In this study, in vitro antibacterial assays against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were performed by employing the series of polyelectrolytes under both dark and illumination conditions. In general, the phosphonium-substituted CPEs displayed profound light-activated biocidal activity, with >99% colony forming unit (CFU) reduction after 15 min of light exposure (16 mW cm-2) at a ≤20 μM CPE concentration. Strong biocidal activity was also observed in the dark for a CPE concentration of 20 μM against S. aureus; however, higher concentrations (200 μM) were needed to enable dark inactivation of E. coli. The dark activity is ascribed to bacterial membrane disruption by the CPEs, supported by a correlation of dark biocidal activity with the chain length of the side groups. The light-activated biocidal activity is associated with the ability of the CPEs to sensitize ROS, which is cytotoxic to the microorganisms. Serial dilution bacterial plating experiments revealed that the series of CPEs was able to induce a >5-log kill versus E. coli with 15 min of exposure to a blue LED source (16 mW cm-2).
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Xiaodan Wang
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas, San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Chan CWT, Chan K, Yam VWW. Induced Self-Assembly and Disassembly of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complexes with Charge Reversal Properties: "Proof-of-Principle" Demonstration of Ratiometric Förster Resonance Energy Transfer Sensing of pH. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25122-25133. [PMID: 35766435 DOI: 10.1021/acsami.2c05677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Kevin Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
4
|
Sun H, Schanze KS. Functionalization of Water-Soluble Conjugated Polymers for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20506-20519. [PMID: 35473368 DOI: 10.1021/acsami.2c02475] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-soluble conjugated polymers (WS-CPs) have found widespread use in bioapplications ranging from in vitro optical sensing to in vivo phototherapy. Modification of WS-CPs with specific molecular functional units is necessary to enable them to interact with biological targets. These targets include proteins, nucleic acids, antibodies, cells, and intracellular components. WS-CPs have been modified with covalently linked sugars, peptides, nucleic acids, biotin, proteins, and other biorecognition elements. The objective of this article is to comprehensively review the various synthetic chemistries that have been used to covalently link biofunctional groups onto WS-CP platforms. These chemistries include amidation, nucleophilic substitution, Click reactions, and conjugate addition. Different types of WS-CP backbones have been used as platforms including poly(fluorene), poly(phenylene ethynylene), polythiophene, poly(phenylenevinylene), and others. Example applications of biofunctionalized WS-CPs are also reviewed. These include examples of protein sensing, flow cytometry labeling, and cancer therapy. The major challenges and future development of functionalized conjugated polymers are also discussed.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
5
|
Song G, Lv F, Huang Y, Bai H, Wang S. Conjugated Polymers for Gene Delivery and Photothermal Gene Expression. Chempluschem 2022; 87:e202200073. [DOI: 10.1002/cplu.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gang Song
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Fengting Lv
- Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 CHINA
| | - Yiming Huang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Haotian Bai
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Shu Wang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| |
Collapse
|
6
|
Sun H, Yee SS, Gobeze HB, He R, Martinez D, Risinger AL, Schanze KS. One- and Two-Photon Activated Release of Oxaliplatin from a Pt(IV)-Functionalized Poly(phenylene ethynylene). ACS APPLIED MATERIALS & INTERFACES 2022; 14:15996-16005. [PMID: 35360898 DOI: 10.1021/acsami.2c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a water-soluble poly(phenylene ethynylene) (PPE-Pt(IV)) that is functionalized with oxidized oxaliplatin Pt(IV) units and its use for photoactivated chemotherapy. The photoactivation strategy is based on photoinduced electron transfer from the PPE backbone to oxaliplatin Pt(IV) as an electron acceptor; this process triggers the release of oxaliplatin, which is a clinically used anticancer drug. Mechanistic studies carried out using steady-state and time-resolved fluorescence spectroscopy coupled with picosecond-nanosecond transient absorption support the hypothesis that electron transfer triggers the drug release. Photoactivation is effective, producing oxaliplatin with a good chemical yield in less than 1 h of photolysis (400 nm, 5 mW cm-2). Photorelease of oxaliplatin from PPE-Pt(IV) can also be effected with two-photon excitation by using 100 fs pulsed light at 725 nm. Cytotoxicity studies using SK-OV-3 human ovarian cancer cells demonstrate that without photoactivation PPE-Pt(IV) is not cytotoxic at concentrations up to 10 μM in polymer repeating unit (PRU) concentration. However, following a short period of 460 nm irradiation, oxaliplatin is released from PPE-Pt(IV), resulting in cytotoxicity at concentrations as low as 2.5 μM PRU.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samantha S Yee
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Habtom B Gobeze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel Martinez
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Zhang Q, Wang X, Cong Y, Kang Y, Wu Z, Li L. Conjugated Polymer-Functionalized Stretchable Supramolecular Hydrogels to Monitor and Control Cellular Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12674-12683. [PMID: 35235302 DOI: 10.1021/acsami.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural extracellular matrix is formed by the assembly of small molecules and macromolecules into a hydrogel-like network that can mechanically support cells and involve in cellular processes. Here, we developed a fluorescent supramolecular hydrogel based on a conjugated oligomer OFBTCO2Na, which facilitated noncovalent assembly through hydrophobic interactions and hydrogen bonds in a molecular scale. The generated dense three-dimensional network endows the supramolecular hydrogel with stretchability and stability. Furthermore, fluorescent OFBTCO2Na in hydrogel acted as a donor, which can excite the acceptor dyes on cells encapsulated in hydrogel via the Förster resonance energy transfer (FRET) mechanism. Investigating the fluorescence signal responsiveness of hydrogel to dynamic mechanical stretching well reflected that enhanced stretching dictated the extent of connection between the cell and matrix, which enables effective FRET at a molecular level and allow spatiotemporally monitoring cell-matrix interactions at the three-dimensional network. Importantly, cells can sense stretch forces by their connection with a hydrogel matrix. The dynamic cell-matrix interaction can be conveniently employed to formulate cell morphology. Therefore, the fluorescent supramolecular hydrogel offers a suitable culture platform not only to investigate cell interactions on interfaces but also to regulate cell behavior at interfaces.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yujie Cong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhenglin Wu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
8
|
Rajappan SC, Vestrheim O, Sharafi M, Li J, Schneebeli ST. Carbonyl-to-Alkyne Electron Donation Effects in up to 10-nm-Long, Unimolecular Oligo( p-phenylene ethynylenes). ORGANIC MATERIALS 2021; 3:337-345. [PMID: 34505058 PMCID: PMC8425378 DOI: 10.1055/s-0041-1730899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We synthesized some of the longest unimolecular oligo(p-phenylene ethynylenes) (OPEs), which are fully substituted with electron-withdrawing ester groups. An iterative convergent/divergent (a.k.a. iterative exponential growth - IEG) strategy based on Sonogashira couplings was utilized to access these sequence-defined macromolecules with up to 16 repeating units and 32 ester substituents. The carbonyl groups of the ester substituents interact with the triple bonds of the OPEs, leading to (i) unusual, angled triple bonds with increased rotational barrier, (ii) enhanced conformational disorder, and (iii) associated broadening of the UV/Vis absorption spectrum. Our results demonstrate that fully air-stable, unimolecular OPEs with ester groups can readily be accessed with IEG chemistry, providing new macromolecular backbones with unique geometrical, conformational, and photophysical properties.
Collapse
Affiliation(s)
- Sinu C Rajappan
- University of Vermont, Departments of Chemistry and Materials Science, 82 University Place, Burlington, VT 05405, United States
| | - Olav Vestrheim
- University of Vermont, Departments of Chemistry and Materials Science, 82 University Place, Burlington, VT 05405, United States
| | - Mona Sharafi
- University of Vermont, Departments of Chemistry and Materials Science, 82 University Place, Burlington, VT 05405, United States
| | - Jianing Li
- University of Vermont, Departments of Chemistry and Materials Science, 82 University Place, Burlington, VT 05405, United States
| | - Severin T Schneebeli
- University of Vermont, Departments of Chemistry and Materials Science, 82 University Place, Burlington, VT 05405, United States
| |
Collapse
|