1
|
Guo Z, Zhang L, Jiu H, Liang D, Wang C, Song W, Yue L, Che S, Han Y, Ma J. TiO 2-modified two-dimensional composite of nitrogen-doped molybdenum trioxide nanosheets as a high-performance anode for lithium-ion batteries. Dalton Trans 2024; 53:5427-5434. [PMID: 38411626 DOI: 10.1039/d3dt04176j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Nitrogen-doped molybdenum trioxide (MoO3/NC) has drawbacks such as volume expansion during long-term charging and discharging cycles, which severely limit its further application. This work proposes the addition of titanium dioxide nanoparticles (TiO2 NPs) for performance improvement of MoO3/NC. TiO2 NPs embedded on the surface of a MoO3/NC nanosheet can alleviate its volume expansion and the accumulation of lithiated products and improve the conductivity of the electrode material. The results show that the MoO3/NC nanosheet decorated with TiO2 NPs (TiO2@MoO3/NC), when used as an electrode material, exhibited a discharge specific capacity of 419 mA h g-1 at a current density of 0.05 A g-1 and retained a discharge specific capacity of 517 mA h g-1 after 600 cycles at a current density of 1 A g-1.
Collapse
Affiliation(s)
- Zhixin Guo
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Lixin Zhang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongfang Jiu
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Dong Liang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Congli Wang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Wei Song
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Luchao Yue
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Sicong Che
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yuxin Han
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Jinfeng Ma
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
2
|
Nam KH, Ganesan V, Kim DH, Jeong S, Jeon KJ, Park CM. SiSe 2 for Superior Sulfide Solid Electrolytes and Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:643-654. [PMID: 38147638 DOI: 10.1021/acsami.3c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Among the various existing layered compounds, silicon diselenide (SiSe2) possesses diverse chemical and physical properties, owing to its large interlayer spacing and interesting atomic arrangements. Despite the unique properties of layered SiSe2, it has not yet been used in energy applications. Herein, we introduce the synthesis of layered SiSe2 through a facile solid-state synthetic route and demonstrate its versatility as a sulfide solid electrolyte (SE) additive for all-solid-state batteries (ASSBs) and as an anode material for Li-ion batteries (LIBs). Li-argyrodites with various compositions substituted with SiSe2 are synthesized and evaluated as sulfide SEs for ASSBs. SiSe2-substituted Li-argyrodites exhibit high ionic conductivities, low activation energies, and high air stabilities. In addition, when using a sulfide SE, the ASSB full cell exhibits a high discharge/charge capacity of 202/169 mAh g-1 with a high initial Coulombic efficiency (ICE) of 83.7% and stable capacity retention at 1C after 100 cycles. Furthermore, the Li-storage properties of SiSe2 as an anode material for LIBs are evaluated, and its Li-pathway mechanism is explored by using various cutting-edge ex situ analytical tools. Moreover, the SiSe2 nanocomposite anode exhibits a high Li- insertion/extraction capacity of 950/775 mAh g-1, a high ICE of 81.6%, a fast rate capability, and stable capacity retention after 300 cycles. Accordingly, layered SiSe2 and its versatile applications as a sulfide SE additive for ASSBs and an anode material for LIBs are promising candidates in energy storage applications as well as myriad other applications.
Collapse
Affiliation(s)
- Ki-Hun Nam
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Vinoth Ganesan
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Do-Hyeon Kim
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Cheol-Min Park
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| |
Collapse
|
3
|
Jiang J, Zhang R, Sun T, Guo J, Liu J, Cheng P, Shi W. Boosting the Lithium-Ion Transport Kinetics of Sn-Based Coordination Polymers through Ligand Aromaticity Manipulation. Inorg Chem 2023; 62:16609-16616. [PMID: 37767995 DOI: 10.1021/acs.inorgchem.3c02699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tin-based compounds are promising anode materials for lithium-ion batteries owing to their low charge/discharge voltage and high theoretical capacity but are plagued by both huge volume expansion during cycling and complex synthetic procedures. Constructing a coordination network between Sn and the lithium-active organic matrix can effectively relieve the volume expansion and increase the lithium storage active site utilization. Herein, we report a facile method to prepare two one-dimensional Sn-based coordination polymers [Sn(Hcta)]n (1) and [Sn(Hbtc)]n (2) (H3cta = 1,3,5-cyclohexanetricarboxylic acid, H3btc = 1,3,5-benzenetricarboxylic acid) for lithium storage, which differ only in the aromaticity of the ligand. 2 with an aromatic ligand provided a reversible capacity of 833 mAh g-1 at 200 mA g-1 over 160 cycles, higher than that of 1 without an aromatic ligand due to the quick charge transfer. The reversible lithium storage reactions of metal centers and organic ligands and the volume expansion rate of Sn-based coordination polymers during cycling were studied by detailed characterization and density functional theory (DFT) calculations. This research revealed that the structural factor of ligand aromaticity in these Sn-based coordination polymers boosted the utilization of active sites and rapid charge transfer, offering a coordination chemistry strategy for the design and synthesis of advanced anode materials.
Collapse
Affiliation(s)
- Jialong Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Runhao Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiankai Sun
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiachen Guo
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingwei Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Zhang C, Li Y, Song J, Wang J, Chen M, Tian Q. Simple scalable preparation of SnOx/FexOy/C composite and its enhanced lithium storage. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ying H, Huang P, Zhang Z, Zhang S, Han Q, Zhang Z, Wang J, Han WQ. Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries. NANO-MICRO LETTERS 2022; 14:180. [PMID: 36048339 PMCID: PMC9437200 DOI: 10.1007/s40820-022-00921-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 06/02/2023]
Abstract
Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security, high energy density, low cost, and environmental friendliness. However, deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application. In this work, we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers (MCFs) to regulate the plating/stripping behavior of Zn anodes. The versatile MCFs protective layer can uniformize the electric field and Zn2+ flux, meanwhile, reduce the deposition overpotentials, leading to high-quality and rapid Zn deposition kinetics. Furthermore, the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating. Accordingly, the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm-2. The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO2 batteries. Remarkably, the Zn@MCFs||α-MnO2 batteries deliver a high specific capacity of 236.1 mAh g-1 at 1 A g-1 with excellent stability, and maintain an exhilarating energy density of 154.3 Wh kg-1 at 33% depth of discharge in pouch batteries.
Collapse
Affiliation(s)
- Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qizhen Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhihao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianli Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
6
|
Ying H, Yang T, Huang P, Zhang Z, Zhang S, Zhang Z, Han WQ. Facile Synthesis of Hybrid Anodes with Enhanced Lithium-Storage Performance Realized by a "Synergistic Effect". ACS APPLIED MATERIALS & INTERFACES 2022; 14:35769-35779. [PMID: 35905442 DOI: 10.1021/acsami.2c09179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alloying-type anodes including Si- and Sn-based materials are considered the most exploitable anodes for high-performance lithium-ion batteries. However, problems of poor kinetics properties and structural failures such as grain pulverization and coarsening hinder their large-scale application. Herein, SnO2/Si@graphite hybrid anodes, with nano-SnO2 and nano-Si thoroughly mixed with each other and loaded onto graphite flakes, have been prepared by a facile ball milling method. Attributed to the "synergistic effect" between SnO2 and Si, the mechanical stability and kinetics properties can be remarkably enhanced. Furthermore, graphite substrate supplies a fast electrically conductive path and buffers the volume expansion of active particles. Accordingly, SnO2/Si@graphite delivers 798.9 mAh g-1 at 200 mA g-1 and maintains 550.8 mAh g-1 after 1000 cycles at 1 A g-1 in half cells. Impressively, a high energy density of 431.4 Wh kg-1 (based on the mass of anode and cathode) can be obtained in full cells when paired with the NCM622 cathode. This work presents an effective strategy to exploit high-performance alloying-type anodes for LIBs by designing hybrid materials with multiple active components.
Collapse
Affiliation(s)
- Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Ling Y, Gao Y, Peng Y, Guan S. Nitrogen-Doped Carbon-Encapsulated Ordered Mesoporous SiO x as Anode for High-Performance Lithium-Ion Batteries. Chem Asian J 2022; 17:e202200440. [PMID: 35750653 DOI: 10.1002/asia.202200440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Indexed: 11/11/2022]
Abstract
SiOx (0<x<2) has been broadly investigated as a promising anode in lithium-ion batteries (LIBs) due to its high theoretical capacity, low cost, and proper working voltage. Nevertheless, its practical application is hindered by volume expansion during the lithiation process and low electrical conductivity, resulting in rapid capacity decay. Herein, we designed a core-shell structured nitrogen-doped carbon-encapsulated ordered mesoporous SiOx composite (SiOx @NC) using 3-aminophenol-formaldehyde (3-AF) as carbon and nitrogen precursor, tetraethyl orthosilicate (TEOS) as the silica precursor, and cationic surfactant cetyltrimethylammonium bromide (C16 TAB) as the mesoporous template. The obtained composite electrode not only can effectively reduce the volume expansion, but also can effectively improve electronic conductivity and further enhance the charge and ion transfer kinetics. Benefiting from the unique structural merits, the obtained SiOx @NC-2 delivers a high reversible capacity of 602.4 mAh g-1 at 0.1 A g-1 after 100 cycles and long-term cyclability (maintain 426.1 mAh g-1 over 1000 cycles at 1 A g-1 ).
Collapse
Affiliation(s)
- Yang Ling
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, P. R. China
| | - Yuan Gao
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, P. R. China
| | - Yan Peng
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, P. R. China
| | - Shiyou Guan
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, P. R. China.,Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, P. R. China
| |
Collapse
|
8
|
Li R, Nie S, Miao C, Xin Y, Mou H, Xu G, Xiao W. Heterostructural Sn/SnO 2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interface Sci 2022; 606:1042-1054. [PMID: 34487927 DOI: 10.1016/j.jcis.2021.08.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
The nitrogen-doped carbon (NC) coating encapsulating heterostructural Sn/SnO2 microcube powders (Sn/SnO2@NC) are successfully fabricated through hydrothermal, polymerization of hydrogel, and carbonization processes, in which the SnO precursor powders exhibit regular microcube structure and uniform size distribution in the presence of optimized N2H4·H2O (3.0 mL of 1.0 mol/L). Interestingly, the precursor powders are easily subjected to a disproportionated reaction to yield the desirable heterostructural Sn/SnO2@NC microcube powders after being calcined at 600 °C in N2 atmosphere in the presence of home-made hydrogel. The coin cells assembled with the Sn/SnO2@NC electrode present a high initial discharge specific capacity (1058 mAh g-1 at 100 mA g-1), improved rate capability (an excellent DLi+ value of 2.82 × 10-15 cm2 s-1) and enhanced cycling stability (a reversible discharge specific capacity of 486.5 mAh g-1 after 100 cycles at 100 mA g-1). The enhanced electrochemical performance can be partly ascribed to the heterostructural microcube that can accelerate the transfer rate of lithium ions by shortening the transmission paths, and be partly to the NC coating that can accommodate the volume effect and contribute to partial lithium storage capacity. Therefore, the strategy may be able to extend the fabrication of Sn/SnO2 heterostructural microcube powders and further application as promising anode materials in lithium ion batteries.
Collapse
Affiliation(s)
- Rui Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Shuqing Nie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Chang Miao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
| | - Yu Xin
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Houyi Mou
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Guanli Xu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Wei Xiao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
| |
Collapse
|