1
|
Li J, Wu E, Xu Z, Hou J, Peng W, Li H, Li X. Superior photothermal conversion performance of black titanium-based materials. iScience 2025; 28:112188. [PMID: 40224008 PMCID: PMC11987640 DOI: 10.1016/j.isci.2025.112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
The application of photothermal conversion technology in the fields of seawater desalination and wastewater treatment stands as a potent approach to alleviating the global water scarcity crisis. In this research, we have successfully synthesized black titanium-based photothermal conversion materials utilizing the aluminothermic reduction method. The experimental results demonstrate that the crafted black TiO2 exhibits a notable overall solar energy absorptivity of 65.7% and a photothermal conversion efficiency of 87.5%. Notably, the black Magneli phase titanium oxide (Ti4O7 and Ti5O9), derived from nanorutile TiO2, exhibits an even more impressive overall solar absorptivity of 83.4% and a photothermal conversion efficiency of 93.8%. Under a light intensity of 5 kW/m2, this material achieves an evaporation rate of 4.4 kg m-2·h-1 and an evaporation efficiency of 63%, underscoring its vast potential for applications in wastewater purification and seawater desalination.
Collapse
Affiliation(s)
- Jun Li
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Enhui Wu
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Zhong Xu
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Jing Hou
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Wenjing Peng
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Hong Li
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Xiang Li
- Panzhihua University, Panzhihua 617000, China
- Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, China
| |
Collapse
|
2
|
Mao S, Yu Z, Chen J, Shen Y, Li M, Sun C, Lin X, Yang B, Chen T, Huang Q, Li X, Yan J. L-Aspartic Acid with Dual Functions: An Eco-Friendly and Affordable Choice to Accelerate High Salinity Brine Utilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408081. [PMID: 39836659 PMCID: PMC11904999 DOI: 10.1002/advs.202408081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
L-Aspartic acid (L-Asp) poses a dual function, which can affect the evaporation and crystallization process of the high-salinity brine by altering the physical or chemical properties of the salts. MSWI (municipal solid waste incineration) fly ash washing leachate, as a typical high-salinity brine, is utilized here to validate this hypothesis under the simulation guidance. Since L-Asp has stronger adsorption energy on the (110) crystal face of CaCO3, L-Asp can facilitate the preferential growth of more valuable vaterite during the softening process (pretreatment before crystallization). Subsequently, the resulting solution undergoes a stable interfacial solar-driven crystallization process under the L-Asp, with a high salt recovery ratio of 0.14 kg m-2 h-1 within 40 h under 1 sun. Finally, to harness the "cradle to grave" full life cycle utilization of washing leachate, the extracted mixed salts are utilized for moisture-enabled electricity generation. L-Asp can significantly enhance this process by reducing the critical relative humidity of mixed salts, thereby exhibiting a stable open circuit potential and short-cut current of ≈ 0.51 V and 10.6 µA within continuous 800 min. In conclusion, this work not only provides innovative approaches for upcycling high-salinity wastewater but also explores novel applications for L-Asp.
Collapse
Affiliation(s)
- Suning Mao
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Yu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jie Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yizhe Shen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chen Sun
- Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou, 324000, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoqing Lin
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Bin Yang
- Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou, 324000, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Ren J, Liu Z, Li Q, Chen L, Gong J, Wang H, Li Y, Qu J, Niu R. Harnessing Synchronous Photothermal and Photocatalytic Effects of Substoichiometric MoO 3-x Nanoparticle-Decorated Membranes for Clean Water Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18855-18866. [PMID: 38577763 DOI: 10.1021/acsami.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.
Collapse
Affiliation(s)
- Jiaxin Ren
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhipeng Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Qiang Li
- Luthou North Chemical Industries Co., Ltd., Sichuan 646605, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huina Wang
- Zhongxing Innovative Material Technologies Co., Ltd., Shenzhen 518120, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Sun Y, Zhao X, Song X, Fan J, Yang J, Miao Y, Xiao S. An all-in-one FeO x-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci (China) 2024; 138:671-683. [PMID: 38135430 DOI: 10.1016/j.jes.2023.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 12/24/2023]
Abstract
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater. Despite much effort made into photothermal materials, there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater. Therefore, we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock. The narrow band gap of the semiconductor material Fe3O4 greatly reduces the recombination of electron-hole pairs, enhancing non-radiative relaxation light absorption. The abundant π orbitals in rGO promote electron excitation and thermal vibration between the lattices. Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters. The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m2·hr), showing promising synergistic water purification properties. These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
Collapse
Affiliation(s)
- Youkun Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Rathore LK, Garg P, Kumar P, Bera A. Super-hydrophilic LaCoO 3/g-C 3N 4 nanocomposite coated beauty sponge for solar-driven seawater desalination with simultaneous volatile organic compound removal. NANOSCALE 2024; 16:2599-2607. [PMID: 38224332 DOI: 10.1039/d3nr04951e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Interfacial solar steam generation (ISSG) is emerging as a promising, environment-friendly solution for fulfilling freshwater and energy demands. However, a critical challenge for ISSG lies in the presence of harmful volatile organic compounds (VOCs) in the feedwater which are co-evaporated with water, leading to more enriched concentration in condensed water. Herein, lanthanum cobaltate-graphitic carbon nitride (LaCoO3/g-C3N4, LCO/g-CN) nanocomposite decorated beauty sponge (LCO/g-CN@BS) is proposed as an efficient photothermal/photocatalytic material for solar-driven seawater desalination and simultaneous VOC degradation. The hydrophobic surface of the beauty sponge after LCO/g-CN coating becomes super-hydrophilic, ensuring sufficient water supply and our LCO/g-CN@BS delivers an evaporation rate of 1.94 kg m-2 h-1 under 1 sun irradiation. This LCO/g-CN@BS shows excellent seawater desalination capacity with a self-cleaning ability when employed for saltwater purification for a salt (NaCl) concentration as high as 15 wt%. Moreover, fast photocarrier transfer between LCO and g-CN leads to enhanced photocatalytic degradation of over 90% of phenol simultaneously, which is about 60% for only an LCO-based beauty sponge. This work presents a promising approach to combining novel nanocomposites with microporous structures for efficient solar desalination, offering simultaneous VOC degradation.
Collapse
Affiliation(s)
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu, J&K 181221, India.
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology Jammu, J&K 181221, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu, J&K 181221, India.
| |
Collapse
|
6
|
Yang Q, Li S, Liang R, Gao L, Zhang S, Jia J, Liu Y, Lyv R, Li G, Xiao S, Zhang D. Microwave assisted synthesis of PQ-GDY@NH 2-UIO-66(Zr) for improved photocatalytic removal of NO x under visible light. J Environ Sci (China) 2023; 134:126-137. [PMID: 37673528 DOI: 10.1016/j.jes.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/08/2022] [Accepted: 01/15/2023] [Indexed: 09/08/2023]
Abstract
Pyrazinoquinoxaline-based graphdiyne (PQ-GDY) contains a fixed number of sp-sp2 hybridized carbon atoms and pyrazine-like sp2 hybridized N atoms. In this paper, NH2-UIO-66(Zr) on PQ-GDY substrate was successfully constructed with the help of microwave-assisted heating. PQ-GDY surface acts as a microwave antenna under microwave irradiation to rapidly absorb microwave energy and form hot spots (hot spot effect), which facilitates the formation of well-dispersed NH2-UIO-66(Zr) with good crystallinity. Transient absorption spectra show that high hole transport property of PQ-GDY can accelerate the migration of photogenerated holes from NH2-UIO-66(Zr) to PQ-GDY and greatly reduce the recombination rate of photogenerated electrons and holes due to the strong interaction between PQ-GDY and NH2-UIO-66(Zr). Under visible light (λ ≥ 420 nm), PQ-GDY@NH2-UIO-66(Zr) shows high photocatalytic stability and high NOx removal rate up to 74%, which is 44% higher than that of primitive NH2-UIO-66(Zr). At the same time, it inhibits the formation of toxic by-products (NO2) and limits its concentration to a low level.
Collapse
Affiliation(s)
- Qingyu Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Rui Liang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Lei Gao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shao Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Junfen Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Rundong Lyv
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Guisheng Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Cui L, Wang P, Che H, Gao X, Chen J, Liu B, Ao Y. Environmental energy enhanced solar-driven evaporator with spontaneous internal convection for highly efficient water purification. WATER RESEARCH 2023; 244:120514. [PMID: 37657314 DOI: 10.1016/j.watres.2023.120514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Solar-driven interfacial evaporation for water purification is limited by the structural design of the solar evaporator and, more importantly, by the inability to separate the water from volatile organic compounds (VOCs) present in the water source. Here, we report a three-dimensional (3D) bifunctional evaporator based on N-doped carbon (CoNC/CF), which enables the separation of fresh water from VOCs by activating PMS during the evaporation process with a VOC removal rate of 99%. There is abundant van der Waals interaction between peroxymonosulfate (PMS) and CoNC/CF, and pyrrolic N is confirmed as the active site for binding phenol, thus contributing to the separation of phenol from water. With the advantageous features of sufficient light absorption, adequate water storage capacity, and spontaneous internal convection flow on its top surface, the 3D evaporator achieves a high evaporation rate under one sun (1 kW/m2) at 3.16 kg/m2/h. More notably, through careful structural design, additional energy from the environment and water can be utilized. With such a high evaporation rate and satisfactory purification performance, this work is expected to provide a promising platform for wastewater treatment.
Collapse
Affiliation(s)
- Lingfang Cui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China.
| |
Collapse
|
8
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
9
|
Song B, Li N, Chang Q, Xue C, Yang J, Hu S. Water State-Driven Catalytic Hydrolysis of Ammonia Borane on Cu 3P-Carbon Dot-Cu Composite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22123-22131. [PMID: 37126804 DOI: 10.1021/acsami.3c01679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen production from ammonia borane (AB) is usually governed by water activation, which is not only energy-intensive but also requires expensive and complicated catalysts. We here propose an integrated photocatalytic-photothermal system that dramatically improves water activation and lowers the transport resistance of H2 by means of intermediate state water evaporation. This system is constructed by covering nanocomposites (Cu3P-carbon dots-Cu) upon vertically aligned acetate fibers (VAAFs). As a result of superior hydration effect of VAAFs and local photothermal heating for rapid water evaporation, its hydrogen production efficiency from AB hydrolysis reaches over 10 times the particulate suspension system under solar irradiation. Mechanism analysis reveals that the rapid vaporization of intermediate water promotes the cleavages of O-H bonds in bound water and the adsorption reaction of AB and water molecules at active sites. Therefore, this work provides a novel approach to optimize catalytic reaction in thermodynamics and kinetics for the hydrolysis of AB.
Collapse
Affiliation(s)
- Bo Song
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Ning Li
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
10
|
Cao S, Thomas A, Li C. Emerging Materials for Interfacial Solar-Driven Water Purification. Angew Chem Int Ed Engl 2023; 62:e202214391. [PMID: 36420911 PMCID: PMC10107296 DOI: 10.1002/anie.202214391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Solar-driven water purification is considered as an effective and sustainable technology for water treatment using green solar energy. One major goal for practical applications is to improve the solar evaporation performance by the design of novel photothermal materials, with optimized heat localization and water transport pathways to achieve reduced energy consumption for water vaporization. Recently, some emerging materials like polymers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and also single molecules were employed to construct novel solar evaporation systems. In this minireview, we present an overview of the recent efforts on materials development for water purification systems. The state-of-the-art applications of these emerging materials for solar-driven water treatment, including desalination, wastewater purification, sterilization and energy production, are also summarized.
Collapse
Affiliation(s)
- Sijia Cao
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.,Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changxia Li
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|
11
|
Mo H, Wang Y. A bionic solar-driven interfacial evaporation system with a photothermal-photocatalytic hydrogel for VOC removal during solar distillation. WATER RESEARCH 2022; 226:119276. [PMID: 36323205 DOI: 10.1016/j.watres.2022.119276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Solar-driven interfacial evaporation is a breakthrough water treatment method because it harvests solar energy for producing clean water. However, evaporated volatile organic compounds (VOCs) in distilled water are the greatest barrier to this technology. Herein, a bionic solar-driven interfacial evaporation system integrating photothermal and photocatalysis technology was developed based on a new combined material TiO2/Ti3C2/C3N4/PVA (TTCP) hydrogel as an evaporator. Phenol-contaminated water, especially actual water (seawater, lake water and reclaimed water), is used to evaluate the water evaporation and VOC photocatalytic degradation performance. The results show that the evaporation rate of TTCP hydrogel was 1.54 kg m - 2h - 1 under 1 kW m - 2, and the removal efficiency of phenol ranged from 69.4% to 100% at different concentrations (1-50 mg/L) in source water. Particularly, the capacity of the bionic evaporator was first evaluated for different types of actual water. Despite the initial TOC (38.12-57.93 mg/L) and total dissolved solids (TDS, 1.35×103-8.78×104 mg/L) for seawater, lake water and reclaimed water being very different, the TDS was decreased by more than two orders of magnitude, below the US EPA drinking water standard (500 mg/L). The maximum TOC removal efficiency reached 80% under simulated sunlight (1 kW m - 2), which is comparable to the efficiency of the ultrafiltration technique previously reported except for seawater. Furthermore, real sunlight (average solar irradiation ∼0.82 kW m- 2) was used to assess the practicability. The bionic evaporator can produce 0.72 kg m - 2h - 1 of vapor from reclaimed water and run with steadily efficient TDS and TOC removals, reaching 99% and 74%, respectively. This technology, as a small, decentralized water treatment method, is a good choice for remote and off-grid areas.
Collapse
Affiliation(s)
- Huatao Mo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
12
|
Xu Y, Li C, Wu X, Li MX, Ma Y, Yang H, Zeng Q, Sessler JL, Wang ZX. Sheet-like 2D Manganese(IV) Complex with High Photothermal Conversion Efficiency. J Am Chem Soc 2022; 144:18834-18843. [PMID: 36201849 DOI: 10.1021/jacs.2c04734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a stable, water-soluble, mononuclear manganese(IV) complex [MnIV(H2L)]·5H2O (Mn-HDCL) that acts as an efficient photothermal material. This system is based on a hexahydrazide clathrochelate ligand (L/HDCL) and is obtained via an efficient one-pot templated synthesis that avoids the need for harsh reaction conditions. Scanning tunneling microscopy images reveal that Mn-HDCL exists as a 2D sheet-like structure. In Mn-HDCL, the manganese(IV) ion is trapped within the cavity of the cage-like ligand. This effectively shields the Mn(IV) ion from the external environment while providing adequate water solubility. As a result of orbital transitions involving the coordinated manganese(IV) ion, as well as metal-to-ligand charge transfer effects, Mn-HDCL possesses a large extinction coefficient and displays a photothermal performance comparable to single-wall carbon nanotubes in the solid state. A high photothermal conversion efficiency (ca. 71%) was achieved in aqueous solution when subjected to near-infrared 730 nm laser photo-irradiation. Mn-HDCL is paramagnetic and provides a modest increase in the T1-weighted contrast of magnetic resonance images both in vitro and in vivo. Mn-HDCL was found to target tumors passively and allow tumor margins to be distinguished in vivo in a mouse model. In addition, it also exhibited an efficient laser-triggered photothermal therapy effect in vitro and in vivo. We thus propose that Mn-HDCL could have a role to play as a tumor-targeting photothermal sensitizer.
Collapse
Affiliation(s)
- Ye Xu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Chao Li
- Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Wu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Ming-Xing Li
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yunsheng Ma
- Jiangsu Key Laboratory of Advanced Functional Materials, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Hong Yang
- Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, Unites States
| | - Zhao-Xi Wang
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Zhang L, Wang X, Xu X, Yang J, Xiao J, Bai B, Wang Q. A Janus solar evaporator with photocatalysis and salt resistance for water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zhou S, He R, Pei J, Liu W, Huang Z, Liu X, Wang J. Self-Regulating Solar Steam Generators Enable Volatile Organic Compound Removal through In Situ H 2O 2 Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10474-10482. [PMID: 35762836 DOI: 10.1021/acs.est.2c02067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial solar steam generation for clean water production suffers from volatile organic compound (VOC) contamination during solar-to-steam conversion. Here, we present a solar steam generator based on the integration of melamine foam (MF), polydopamine (PDA), and Ag/AgCl particles. Together with the high photothermal conversion efficiency (ca. 87.8%, 1 kW/m2) achieved by the PDA thin film, the Ag/AgCl particles can efficiently activate the localized generation of H2O2 and •OH in situ, thus degrading the VOCs during the rapid vapor generation. The generation of H2O2 and •OH in situ also facilitates the creation of a buffer zone containing H2O2 and •OH for the rapid removal of organic pollutants in the surrounding water attracted to the solar vapor generator, demonstrating a self-cleaning steam generator toward various volatile compounds such as phenol, aniline, 2,4-dichlorophenol, and N,N-dimethylformamide in a wide range of concentrations.
Collapse
Affiliation(s)
- Shuai Zhou
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruihua He
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
| | - Jianchuan Pei
- College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiping Liu
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaohong Huang
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Lu Y, Zhang H, Fan D, Chen Z, Yang X. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127128. [PMID: 34534804 DOI: 10.1016/j.jhazmat.2021.127128] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Effectively harnessing renewable and inexhaustible solar radiation for energy conversion has attracted significant research interest in the past decade. Solar thermal conversion, as a ubiquitous phenomenon, can be implemented to evaporate water and concurrently boost photocatalytic performance for addressing freshwater scarcity and energy crisis. Most recently, solar water evaporation accompanied by photocatalytic degradation, sterilization, and hydrogen production has been proposed as a promising avenue to endow new vitality into the field of clean water and energy production. Driven by the advances of rationally designed solar-powered functional materials, a large variety of photothermal-coupled photocatalysis technologies have been exploited. In this context, it is imperative to summarize the recent progress and discuss the challenges in this multidisciplinary field. Herein, we overview photothermal materials based on various fundamental principles and highlight emerging applications in the areas of solar water evaporation, water purification, and solar-driven energy production. Furthermore, the challenges and perspectives toward both fundamental research and practical applications are also proposed. It is envisioned that this review can provide insightful suggestions to further advance the development of integrated solar thermal driven water evaporation and photocatalytic systems to fulfill concurrent energy conversion and environmental applications.
Collapse
Affiliation(s)
- Yi Lu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Deqi Fan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zupeng Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofei Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Li Z, Chen K, Yu L, Shi Q, Sun Y. Fe3O4 nanoparticles-mediated solar-driven enzymatic PET degradation with PET hydrolase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yolk-like non-stoichiometric nickel sulfide-based Janus hydrogel photothermal film for enhanced solar-driven water evaporation and multi-media purification. J Colloid Interface Sci 2021; 607:1446-1456. [PMID: 34583047 DOI: 10.1016/j.jcis.2021.09.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Solar-driven interface water evaporation is a promising strategy for desalination and wastewater treatment. However, it remains a huge challenge to simultaneously achieve a high light-to-heat conversion efficiency (η) and multi-media evaporation applications. In this study, a highly efficient Janus hydrogel photothermal film was developed using yolk-like non-stoichiometric nickel sulfide (NiS2-x) microspheres and agar hydrogel. The NiS2-x immobilized in the agar hydrogel has full-spectrum absorption characteristics at 200-2500 nm, which can perform efficient light-to-heat conversion and regulate water transport channels. Additionally, the pure agar in the bottom can transport water effectively and avoid heat loss. By the pouring method, the Janus hydrogel film can be easily prepared into various shapes; hence, it can be adjusted depending on the environment in which it is used. The optimized Janus hydrogel film (Janus hydrogel-1) possessed good hydrophilicity and showed an excellent solar evaporation rate of 1.45 kg m-2h-1, and a high η of 97% under one-sun irradiation. Theoretical simulation results showed that the outstanding water evaporation performance of Janus hydrogel-1 was mainly due to its relatively free water transport channels. Janus hydrogel-1 can be used for water evaporation applications in various media, including seawater, heavy metal ion/organic wastewater, and domestic sewage. Our work highlights the great potential of Janus hydrogel-1 for realizing a highly effective solar energy-driven interface water evaporation and multi-media purification.
Collapse
|