1
|
Zhou J, Huang H, Wang Q, Li Z, Chen S, Yu J, Zhong Y, Chen J, Huang H. Extended-Gate FET Biosensor Based on GaN Micropillar Array and Polycrystalline Layer: Application to Hg 2+ Detection in Human Urine. Anal Chem 2024; 96:7577-7584. [PMID: 38696338 DOI: 10.1021/acs.analchem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg2+ detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(μg/L) and a wide linear range (1 ng/L-24.5 μg/L). In addition, the detection of Hg2+ in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.
Collapse
Affiliation(s)
- Jialing Zhou
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hui Huang
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qian Wang
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhirui Li
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shunji Chen
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Yu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Yuan Zhong
- Center for Advanced Measurement Science, National Institute of PR Metrology, Beijing 100029, China
| | - Jing Chen
- Electrical & Electronic Experimental Center, Dalian University of Technology, Dalian 116024, China
| | - Huolin Huang
- School of Optoelectronic Engineering and Instrument Science, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Lv S, Wang S, Li L, Xie S, Yu J, Zhong Y, Wang G, Liang C, Xu X, Zhang L. Gallium Nitride Based Electrode for High-Temperature Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300780. [PMID: 36965081 DOI: 10.1002/advs.202300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Gallium nitride (GaN) single crystal, as the representative of wide-band semiconductors, has great prospects for high-temperature energy storage, of its splendid power output, robust temperature stability, and superior carrier mobility. Nonetheless, it is an essential challenge for GaN-based devices to improve energy storage. Herein, an innovative strategy is proposed by constructing GaN/Nickel cobalt oxygen (NiCoO2 )heterostructure for enhanced supercapacitors (SCs). Benefiting from the synergy effect between the porous GaN network as a highly conductive skeleton and the NiCoO2 with massive active sites. The GaN/NiCoO2 heterostructure-based SCs with ion liquids electrolyte are assembled and delivered an impressive energy density of 15.2 µWh cm-2 and power density, as well as superior service life at 130 °C. The theoretical calculation further explains that the reason for the energy storage enhancement of the GaN/NiCoO2 is due to the presence of the built-in electric fields. This work offers a novel perspective for meeting the practical application of GaN-based energy storage devices with exceptional performance capable of operation under high-temperature environments.
Collapse
Affiliation(s)
- Songyang Lv
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shouzhi Wang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Shenzhen Research Institute, Shandong University, Shenzhen, 518000, P. R. China
| | - Lili Li
- Institute of Crystal Materials, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shoutian Xie
- School of Public Administration, Shandong Normal University, Jinan, 250100, P. R. China
| | - Jiaoxian Yu
- Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yueyao Zhong
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan, 250100, P. R. China
| | - Guodong Wang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chang Liang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiangang Xu
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Lei Zhang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Shenzhen Research Institute, Shandong University, Shenzhen, 518000, P. R. China
| |
Collapse
|
3
|
Chen S, Huang H, Sun H, Liu Q, Zhu H, Zhao J, Liu P, Yu J. Electrochemical Sensor Made with 3D Micro-/Mesoporous Structures of CoNi-N/GaN for Noninvasive Detection of Glucose. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49035-49046. [PMID: 36278873 DOI: 10.1021/acsami.2c17325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noninvasive detection of glucose (NGD) is important because ∼10% of the global population is suffering from diabetes. Herein, a three-dimensional (3D) micro-/mesoporous structure, i.e., a CoNi-N nanosheet-coated GaN 3D scaffold (CoNi-N@GaN-3S), was proposed for detecting saliva glucose, where the GaN scaffold can provide a large open surface for nanosheet decoration, while the catalytic nanosheets can increase the surface area and prevent the GaN-3S from anodic corrosion. Moreover, it was found that high-temperature ammoniation of CoNi can lead to dense atomic holes and an N-terminated surface (CoNi-N), which promoted the ionization of CoNi with a higher catalytic activity. It is the first time that dense atomic holes have been observed in CoNi to our knowledge. The designed CoNi-N@GaN-3S sensor was applied to the electrochemical detection of glucose with a low limit of detection (LOD) of 60 nM and a high sensitivity, selectivity, and stability. In addition, detection of human-saliva glucose was realized with an LOD of 5 μM, which was more than 4-fold lower than reported reliable LODs. An integrated sensor with a low consumption of saliva sample was demonstrated for NGD.
Collapse
Affiliation(s)
- Shunji Chen
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Hui Huang
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Haiming Sun
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki567-0047, Osaka, Japan
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
| | - Qiunan Liu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, China
- Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Ibaraki567-0047, Osaka, Japan
| | - Huichao Zhu
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Jian Zhao
- School of Automotive Engineering, Dalian University of Technology, Dalian116024, China
| | - Pengbo Liu
- School of Automotive Engineering, Dalian University of Technology, Dalian116024, China
| | - Jun Yu
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian116024, Liaoning, China
| |
Collapse
|
4
|
Ranjan P, Gaur S, Yadav H, Urgunde AB, Singh V, Patel A, Vishwakarma K, Kalirawana D, Gupta R, Kumar P. 2D materials: increscent quantum flatland with immense potential for applications. NANO CONVERGENCE 2022; 9:26. [PMID: 35666392 PMCID: PMC9170864 DOI: 10.1186/s40580-022-00317-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 05/08/2023]
Abstract
Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young's moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Snehraj Gaur
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Himanshu Yadav
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ajay B Urgunde
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Vikas Singh
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Avit Patel
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Kusum Vishwakarma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Deepak Kalirawana
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
5
|
Li C, Wu X, Hu J, Shan J, Zhang Z, Huang X, Liu H. Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35657-35681. [PMID: 35257332 DOI: 10.1007/s11356-022-19469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.
Collapse
Affiliation(s)
- Caifang Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Junyue Shan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|