1
|
He Z, Song J, Li C, Huang Z, Liu W, Ma X. High-Performance Organic Ultralong Room Temperature Phosphorescence Based on Biomass Macrocycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418506. [PMID: 39930926 DOI: 10.1002/adma.202418506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
The pursuit of sustainable, high-performance organic ultralong room temperature phosphorescence (OURTP) materials with stimulus-responsive properties presents a significant and enticing yet formidable challenge. Herein, an efficient strategy to confining boric acid-based compounds into biomass macrocycle γ-cyclodextrin through multiple interactions is developed, enabling the construction of high-performance and multicolor OURTP doped systems. The synergistic effects of strong hydrogen bonding, C─O─B covalent cross-linking, and host-guest encapsulation significantly suppress non-radiative transition, culminating in an extraordinary lifetime and excellent phosphorescence quantum yield of 4.65 s and 32.8%, respectively, which are far superior to reported biomass RTP materials. Additionally, merging biomass macrocycle with phosphors contributes to multiple stimulus responses, overcoming the inherent limitations of degradation and recycling of organic RTP compounds, and dynamically modulating RTP signals through multiple-stimulus responses, achieving the integration of multifunctional dynamic data processing techniques. This work will provide a direction for new environmentally friendly and potentially commercially available stimulus-responsive OURTP materials.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chunli Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200072, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Gao M, Wu R, Zhang Y, Meng Y, Fang M, Yang J, Li Z. New Molecular Photoswitch Based on the Conformational Transition of Phenothiazine Derivatives and Corresponding Triplet Emission Properties. J Am Chem Soc 2025; 147:2653-2663. [PMID: 39801435 DOI: 10.1021/jacs.4c14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Molecular photoswitch research has drawn much attention in the last century owing to its great potential in the development of smart materials. However, photoswitches suitable for constructing light-responsive luminescent materials remain limited, especially those involving triplet-state phosphorescence. Herein, we designed a novel molecular photoswitch based on the conformation transition of phenothiazine derivatives, minimizing steric hindrance (-CH3 > -Cl > -F) to regulate the conformation transition process while introducing a cyanobenzene acceptor to promote phosphorescence emission potential. When they were doped into a polymer matrix, varying photoswitch rates were achieved by incorporating different steric hindrance groups into phenothiazine or cyanobenzene groups, accompanied by photoresponsive room-temperature phosphorescence. This study is expected to greatly expand the diversity and applications of organic photoswitch molecules.
Collapse
Affiliation(s)
- Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ruimin Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yawen Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yunshu Meng
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Shen S, Xie Q, Sahoo SR, Jin J, Baryshnikov GV, Sun H, Wu H, Ågren H, Liu Q, Zhu L. Edible Long-Afterglow Photoluminescent Materials for Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404888. [PMID: 38738587 DOI: 10.1002/adma.202404888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 05/14/2024]
Abstract
Confining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment. Herein an in situ metathesis promoted doping strategy is presented, namely, mixing ≈10-3 weight ratio of organic-emitter multicarboxylates with inorganic salt reactants, followed by metathesis reactions to prepare a series of hydrophilic but water-insoluble organic-inorganic doping afterglow materials. This strategy leads to the formation of edible long-afterglow photoluminescent materials with superior biocompatibility and excellent bioimaging effect. The phosphorescence quantum yield of the materials can reach dozens of percent (the highest case: 66.24%), together with the photoluminescent lifetime lasting for coupes of seconds. Specifically, a long-afterglow barium meal formed by coronene salt emitter and BaSO4 matrix is applied into animal experiments by gavage, and bright stomach afterglow imaging is observed by instruments or mobile phone after ceasing the photoexcitation with deep tissue penetration. This strategy allows a flexible dosage of the materials during bioimaging, facilitating the development of real-time probing and theranostic technology.
Collapse
Affiliation(s)
- Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qishan Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Smruti Ranjan Sahoo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Jian Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Department of Burns Surgery, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Yang C, Yan B. Dual-Function Platform Based on Postsynthetic Functionalization of a Water-Stable Hydrogen-Bonded Organic Framework: Ratiometric Sensing of Nicotine and Cotinine and Dynamic Anticounterfeiting for Information Encryption. Inorg Chem 2023; 62:20458-20466. [PMID: 38032229 DOI: 10.1021/acs.inorgchem.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nicotine and its major metabolite cotinine are widely used as markers of tobacco smoke abstinence as well as indicators of active smoking levels and the assessment of passive inhalation of tobacco smoke in nonsmokers. Therefore, using an easy-to-prepare sensing platform that can provide a rapid, highly sensitive response for the simultaneous detection of salivary nicotine levels and urinary cotinine levels is especially crucial for helping heavy cigarette smokers quit smoking and protecting public health. Hydrogen-bonded organic frameworks, as a novel class of porous crystalline materials, show immense potential for functional modification and optical sensing. Herein, a new HOF was prepared by a simple solvent evaporation method, and a dual-emitting material Eu(bpy)@HOF-215(1) was obtained by the postsynthetic modification of HOF by lanthanide luminescent complexes, which maintains favorable structural stability and introduces the characteristic emitting of Eu, allowing use as a ratiometric fluorescent sensor for salivary nicotine and urinary cotinine, with a limit of detection of nicotine of 0.045 μM in saliva and a limit of detection of cotinine of 0.591 μM in urine. Furthermore, luminescent inks based on HOF-215 have been fabricated based on the photoresponse variations of 1 to NIC and COT, which enables the multilevel encryption and decryption of information, in a dynamic and recyclable process. This work not only synthesizes a novel blue HOF but also provides a representative successful case of a dual-function platform for simultaneous application to ratiometric sensing and dynamic anticounterfeiting.
Collapse
Affiliation(s)
- Chunyu Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
5
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Gao M, Tian Y, Li X, Gong Y, Fang M, Yang J, Li Z. The Effect of Molecular Conformations and Simulated "Self-Doping" in Phenothiazine Derivatives on Room-Temperature Phosphorescence. Angew Chem Int Ed Engl 2023; 62:e202214908. [PMID: 36449343 DOI: 10.1002/anie.202214908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The research of purely organic room-temperature phosphorescence (RTP) materials has drawn great attention for their wide potential applications. Besides single-component and host-guest doping systems, the self-doping with same molecule but different conformations in one state is also a possible way to construct RTP materials, regardless of its rare investigation. In this work, twenty-four phenothiazine derivatives with two distinct molecular conformations were designed and their RTP behaviors in different states were systematically studied, with the aim to deeply understand the self-doping effect on the corresponding RTP property. While the phenothiazine derivatives with quasi-axial (ax) conformation presented better RTP performance in aggregated state, the quasi-equatorial (eq) ones were better in isolated state. Accordingly, the much promoted RTP performance was achieved in the stimulated self-doping state with ax-conformer as host and eq-one as guest, demonstrating the significant influence of self-doping on RTP effect.
Collapse
Affiliation(s)
- Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yanxiang Gong
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Zhang X, Cheng Y, You J, Zhang J, Yin C, Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat Commun 2022; 13:1117. [PMID: 35236853 PMCID: PMC8891296 DOI: 10.1038/s41467-022-28759-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Herein, we present a phosphorescent cationized cellulose derivative by simply introducing ionic structures, including cyanomethylimidazolium cations and chloride anions, into cellulose chains. The imidazolium cations with the cyano group and nitrogen element promote intersystem crossing. The cyano-containing cations, chloride anions and hydroxyl groups of cellulose form multiple hydrogen bonding interactions and electrostatic attraction interactions, effectively inhibiting the non-radiative transitions. The resultant cellulose-based RTP material is easily processed into phosphorescent films, fibers, coatings and patterns by using eco-friendly aqueous solution processing strategies. Furthermore, after we construct a cross-linking structure by adding a small amount of glutaraldehyde as the cross-linking agent, the as-fabricated phosphorescent patterns exhibit excellent antibacterial properties and water resistance. Therefore, considering the outstanding biodegradability and sustainability of cellulose materials, cellulose-based easy-to-process RTP materials can act as antibacterial, water-resistant, and eco-friendly phosphorescent patterns, coatings and bulk materials, which have enormous potential in advanced anti-counterfeiting, information encryption, disposable smart labels, etc.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaohui Cheng
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingxuan You
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.
| | - Chunchun Yin
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
Yan X, Peng H, Xiang Y, Wang J, Yu L, Tao Y, Li H, Huang W, Chen R. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104073. [PMID: 34725921 DOI: 10.1002/smll.202104073] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The design and characterization of purely organic room-temperature phosphorescent (RTP) materials for optoelectronic applications is currently the focus of research in the field of organic electronics. Particularly, with the merits of preparation controllability and modulation flexibility, host-guest material systems are encouraging candidates that can prepare high-performance RTP materials. By regulating the interaction between host and guest molecules, it can effectively control the quantum efficiency, luminescent lifetime, and color of host-guest RTP materials, and even produce RTP emission with stimuli-responsive features, holding tremendous potential in diverse applications such as encryption and anti-counterfeiting, organic light-emitting diodes, sensing, optical recording, etc. Here a roundup of rapid achievement in construction strategies, molecule systems, and diversity of applications of host-guest material systems is outlined. Intrinsic correlations between the molecular properties and a survey of recent significant advances in the development of host-guest RTP materials divided into three systems including rigid matrix, exciplex, and sensitization are presented. Providing an insightful understanding of host-guest RTP materials and offering a promising platform for high throughput screening of RTP systems with inherent advantages of simple material preparation, low-cost, versatile resource, and controllably modulated properties for a wide range of applications is intended.
Collapse
Affiliation(s)
- Xi Yan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Peng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Xiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Juan Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lan Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Huanhuan Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|