1
|
Jalilian M, Parvizi P, Zangeneh MR. Advances in graphene-based nanomaterials for heavy metal removal from water: Mini review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70062. [PMID: 40123408 DOI: 10.1002/wer.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The environment and public health are seriously at risk from the increasing levels of heavy metal (HM) pollution in water bodies, hence efficient remediation techniques must be developed. Unique physicochemical properties of graphene (Gn) such as its enormous surface area, chemical stability, and extraordinary adsorption capabilities have made it a promising candidate for application in various adsorption processes. Recent studies indicate the heavy metal removal capabilities of Gn-based materials such as Gn oxide (GO) and reduced GO (rGO) reach 99% efficiency rates for lead (Pb2+), cadmium (Cd2+), and mercury (Hg2+) through strong electrostatic bonds and metal coordination along with π-π stacking interactions. In addition, the selective nature of Gn-based adsorbents grows better through functionalization because it incorporates thiol, amine, and sulfonic acid groups. The integration of Gn-based materials with metal-organic frameworks (MOFs) combined with magnetic nanoparticles along with bio-based polymers enhances adsorption efficiency and increases stability while offering recyclability features. The conclusion of this study discusses the current obstacles such as cost, scalability, environmental impact, and selectivity and potential future developments for the widespread use of Gn-based adsorbents in water treatment, highlighting the significance of continued research to improve these substances for useful environmental applications. PRACTITIONER POINTS: Graphene-based materials exhibit high capacity for adsorbing various heavy metals, enhancing water purification. Functionalization of graphene improves its ability to selectively target and remove specific heavy metals like mercury and lead. Graphene derivatives can achieve heavy metal removal within minutes, making them efficient for water treatment. Despite high synthesis costs, graphene's superior performance may lower long-term operational costs in wastewater treatment.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran
- Pooya Power Knowledge Enterprise, Tehran, Iran
| | - Pooya Parvizi
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammad Reza Zangeneh
- Pooya Power Knowledge Enterprise, Tehran, Iran
- Department of Energy and Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Ali I, Wan P, Peng C, Tan X, Sun H, Li J. Integration of metal organic framework nanoparticles into sodium alginate biopolymer-based three-dimensional membrane capsules for the efficient removal of toxic metal cations from water and real sewage. Int J Biol Macromol 2024; 266:131312. [PMID: 38582471 DOI: 10.1016/j.ijbiomac.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China.
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiao Tan
- College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Jo JH, Kim KJ, An EJ, Lee J, Jae H, Roh D, Chi WS. Ionic Cross-Linked MOF-Polymer Mixed-Matrix Membranes for Suppressing Interfacial Defects and Plasticization Behavior. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656187 DOI: 10.1021/acsami.3c19071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using N,N'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H2 permeability of 1640 Barrer and CO2 permeability of 1981 Barrer and slightly decreased H2/CH4, H2/N2, CO2/CH4 and CO2/N2 selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H2 and CO2 permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.
Collapse
Affiliation(s)
- Jin Hui Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ki Jung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Ji An
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jieun Lee
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyunmo Jae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Dongkyu Roh
- Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Won Seok Chi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
5
|
Wang Z. Phosphorus-modified bone chars with developed porosity for efficient removal of Pb(II), Cu(II), and Cd(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123796-123807. [PMID: 37991622 DOI: 10.1007/s11356-023-31080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Guided by the concept of treating the wastes with wastes, the efficient use of bone residuals as separation materials is worthy of study. Since bone chars (BCs) are composed of hydroxyapatite and carbon matrix, it is desired to extend the carbon component with improved pore structure and abundant modified groups further, which is favorable to capture metal ions. In this work, phosphorus-modified BCs (PBCs) were fabricated by pretreating bone residuals with phytic acid, achieving improved surface areas (208.7-517.6 m2/g, 37.9-8.2-fold of enhancement) and abundant surface phosphorus contents (5.63-7.54 at.%, 2.8-5.8-fold of enhancement) than BCs. PBCs could adsorb heavy metals with fast kinetics (10.0 h) and excellent maximum capacities (463.9, 156.5, and 80.9 mg/g for Pb(II), Cu(II), and Cd(II)). Spectroscopic results demonstrated that the formation of precipitation was crucial for the enrichment of Pb(II). Moreover, the coordination with functional groups (O-/reductive N-species), the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination should also be considered for the sorption. Our study facilitated the application of activated bone wastes as a promising candidate to remediate aquatic heavy metals.
Collapse
Affiliation(s)
- Zihao Wang
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Du X, Rashid SA, Abdullah LC, Rahman NA. Fabrication of electrospun cellulose/chitosan/ball-milled bone char membranes for efficient and selective sorption of Pb(II) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110417-110430. [PMID: 37783997 DOI: 10.1007/s11356-023-30213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Separation materials have received increasing attention given their broad applications in the management of environmental pollution. It is desired to balance the contradiction between high separation efficiency and selectivity of separation materials. The integration of ball-milled bone chars with electrospun membranes might achieve this balance. In this study, electrospun cellulose/chitosan/ball-milled bone char (CL/CS/MB) membranes were by well-dispersing ball-milled bone chars with nanoscale size (98.9-167.5 nm) and developed porosity (40.2-373.1 m2/g) in the electrospinning solvent. The synergistic integration of distributed MBs (5.4-31.5 wt.% of loading hydroxyapatite on the membrane matrix) allowed the efficient sorption of Pb(II) with fast kinetics (20.0 min), excellent capacity (219.9 mg/g at pH 5.0, T 298 K), and favorable selectivity coefficients (2.76-6.79). The formation of minerals was dominant for the selective sorption of Pb(II) by combining the spectral analysis and quantitative determination. The surface complexation with O-/reductive N-species, the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination with the aromatic carbon via the π-electrons should be not ignored for the capture of Pb(II). This work demonstrated the feasibility of electrospun CL/CS/MB membranes as a promising candidate for the remediation of aquatic pollutants.
Collapse
Affiliation(s)
- Xuan Du
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Suraya Abdul Rashid
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Norizah Abdul Rahman
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
8
|
Fareed H, Jang K, Lee W, Kim IS, Han S. Sulfonated graphene oxide-based pervaporation membranes inspired by a tortuous brick and mortar structure for enhanced resilience against silica scaling and organic fouling. CHEMOSPHERE 2023; 326:138461. [PMID: 36948259 DOI: 10.1016/j.chemosphere.2023.138461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
A novel tortuous brick-and-mortar structure utilizing intercalation of polyvinyl alcohol (PVA) on sulfonated graphene oxide (SGO) membranes was specifically tailored for brine treatment by pervaporation to ensure excessive resistance to silica scaling and organic fouling, as well as ultrafast water transport without compromising salt rejection. The synthesized SGO membrane showed a smoother surface morphology, improved zeta potential, and a higher hydration capacity than the graphene oxide (GO) membrane. Further intercalation of PVA through glutaraldehyde (GA) crosslinking, confirmed by Fourier transform infrared spectroscopy and X-ray diffraction analysis, conferred increased cohesiveness, and the SGO-PVA-GA membrane was therefore able to withstand ultrasonication tests without any erosion of the coating layer. According to a pervaporative desalination test, the SGO-PVA-GA membrane exhibited 62 kg m-2 h-1 of permeate flux, with an extraordinary salt rejection of 99.99% for a 10 wt% NaCl feed solution at 65 °C. The 72 h organic fouling, silica scaling, and combined fouling and scaling tests proved that the SGO-PVA-GA membrane sustains a stable flux with less scaling and fouling than the GO-PVA-GA membrane, attributable to dense surface negative charges and great hydration capacities caused by sulfonic acid. Thus, the SGO-PVA-GA membrane offers superlative advantages for long-term brine treatment by pervaporation, related to its ability to withstand silica scaling and organic fouling.
Collapse
Affiliation(s)
- Hasan Fareed
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyunghoon Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Li M, Kang Y, Ma H, Dong J, Wang Y, Kuang S. Efficient removal of heavy metals from aqueous solutions using Mn-doped FeOOH: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116161. [PMID: 37196694 DOI: 10.1016/j.envres.2023.116161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
The treatment of heavy metal ion contamination in aquatic ecosystems has been a growing global concern for centuries. Iron oxide nanomaterials are effective in heavy metals removal, but are frequently challenging due to the precipitation of Fe(III) and poor reusability. To improve the removal of heavy metals by iron hydroxyl oxide (FeOOH), the iron-manganese oxide material (FMBO) was separately prepared to remove Cd(II), Ni(II), and Pb(II) in individual and multiple systems. Results revealed that the loading of Mn enlarged the specific surface area and stabilized the structure of FeOOH. FMBO achieved 18%, 17%, and 40% higher removal capacities of Cd(II), Ni(II), and Pb(II) than that of FeOOH, respectively. Besides, mass spectrometry analysis demonstrated that the surface hydroxyls (-OH, Fe/Mn-OH) of FeOOH and FMBO provided the active sites for metal complexation. Fe(III) was reduced by Mn ions and further complexed with heavy metals. Further density functional theory calculations revealed that Mn loading led to the structural reconstruction of the electron transfer, which significantly promoted stable hybridization. This confirmed that FMBO improved the properties of FeOOH and was efficient for removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Mei Li
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yan Kang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| | - Haoqin Ma
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jiahao Dong
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yuqi Wang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Shaoping Kuang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
10
|
Li X, Zheng S, Li Y, Ding J, Qin W. Effectively facilitating the degradation of chloramphenicol by the synergism of Shewanella oneidensis MR-1 and the metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131545. [PMID: 37148794 DOI: 10.1016/j.jhazmat.2023.131545] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation. 0.5 g/L Fe-MIL-101 with more possible active sites led to a three-fold higher CAP removal rate in the synergistic system with MR-1 (initial bacterial concentration of 0.2 at OD600), and showed a superior catalytic effect than exogenously added Fe(III)/Fe(II) or magnetite. Mass spectrometry revealed that CAP was transformed into smaller molecular weight and less toxic metabolites in cultures. Transcriptomic analysis showed that Fe-MIL-101 enhanced the expression of genes related to nitro and chlorinated contaminants degradation. Additionally, genes encoding hydrogenases and c-type cytochromes associated with extracellular electron transfer were significantly upregulated, which may contribute to the simultaneous bioreduction of CAP both intracellularly and extracellularly. These results indicated that Fe-MIL-101 can be used as a catalyst to synergize with EAB to effectively facilitate CAP degradation, which might shed new light on the application in the in situ bioremediation of antibiotic-contaminated environments.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China.
| | - Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| |
Collapse
|
11
|
Carmona B, Abejón R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. MEMBRANES 2023; 13:385. [PMID: 37103812 PMCID: PMC10145262 DOI: 10.3390/membranes13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.
Collapse
Affiliation(s)
- Benjamín Carmona
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
12
|
Efficient separation of uranium from aqueous solution using sustainable biomass: an insight of adsorption isotherm and kinetics. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Phosphorus modified graphitic carbon nitride activated by guanidine phosphate enables fast, efficient and selective immobilization of aquatic lead. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Deshmukh P, Sar SK, Jindal MK, Ray T. Magnetite based green bio composite for uranium exclusion from aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Patel K, Sutar AK, Maharana T. Synthesis of carboxylic graphene o
xide‐carboxymethyl
chitosan composite and its applications toward the remediation of
U
6
+
, Pb
2+
, Cr
6+
, and Cd
2+
ions from aqueous solutions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry National Institute of Technology Raipur India
| | | | | |
Collapse
|
16
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
17
|
Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Koppula S, Jagasia P, Panchangam MK, Manabolu Surya SB. Synthesis of bimetallic Metal-Organic Frameworks composite for the removal of Copper(II), Chromium(VI), and Uranium(VI) from the aqueous solution using fixed-bed column adsorption. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Xu Y, Zhu Y, Chen Z, Zhu J, Chen G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138215. [PMID: 35805879 PMCID: PMC9266909 DOI: 10.3390/ijerph19138215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.
Collapse
|
20
|
Yang C, Yang HR, Li SS, An QD, Zhai SR, Xiao ZY. Rationally designed carboxymethylcellulose-based sorbents crosslinked by targeted ions for static and dynamic capture of heavy metals: Easy recovery and affinity mechanism. J Colloid Interface Sci 2022; 625:651-663. [PMID: 35764045 DOI: 10.1016/j.jcis.2022.06.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
A separable spherical bio-adsorbent (CMC-Cr) was prepared for capturing heavy metal ions by simple coordination and cross-linking between targeted ions of Cr3+ and carboxymethyl cellulose (CMC). A simple alternation of the CMC incorporation allowed the interconnected networks within the microspheres of preformed solid CMC to be adjusted. The excellent network structure could achieve the maximum collision between the adsorbent and the heavy metal cations in the wastewater. Through investigations, CMC-Cr-2 beads were determined as the optimal adsorbent. The adsorption performance of novel materials was evaluated by examining their adsorption behavior on Pb(II) and Co(II) under both static and dynamic conditions. The results showed that the adsorption behavior of CMC-Cr-2 beads on both two heavy metal cations could be fully reflected by the Freundlich model. Under the theoretical conditions, the maximum adsorption capacities were 97.26 and 144.74 mg/g. The kinetic results for the adsorption of two heavy metal cations on CMC-Cr-2 beads were consistent with the Pseudo-second-order kinetic model. Moreover, the correlation coefficient of the Thomas model was significant in the dynamic adsorption performance tests. Five regeneration cycle studies were successfully carried out on CMC-Cr-2 beads to evaluate reusability and stability. The applicability of CMC-Cr-2 beads in authentic aqueous solutions (both the single and binary pollutant systems) was also studied, and the results indicated that CMC-Cr-2 beads had a high potential for practical implementation. Furthermore, by analyzing the surface interactions of two heavy metal cations with the CMC-Cr-2 beads based on FTIR and XPS characterization, a basic understanding of the interaction between bio-sorbents and pollutants in wastewater can be obtained.
Collapse
Affiliation(s)
- Chen Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hua-Rong Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan-Shan Li
- Jinxi Research Institute of Chemical Industry Company Limited, Huludao 125000, China
| | - Qing-Da An
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shang-Ru Zhai
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Zuo-Yi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
21
|
Zhao X, Yuan P, Yang Z, Peng W, Meng X, Cheng J. Integration of Micro-Nano-Engineered Hydroxyapatite/Biochars with Optimized Sorption for Heavy Metals and Pharmaceuticals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1988. [PMID: 35745328 PMCID: PMC9227354 DOI: 10.3390/nano12121988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
From the perspective of treating wastes with wastes, bamboo sawdust was integrated with a hydroxyapatite (HAP) precursor to create engineered nano-HAP/micro-biochar composites (HBCs) by optimizing the co-precipitated precursor contents and co-pyrolysis temperature (300, 450, 600 °C). The physicochemical properties of HBCs, including morphologies, porosities, component ratios, crystalline structures, surface elemental chemical states, surface functional groups, and zeta potentials as a function of carbonization temperatures and components of precursors, were studied. Biochar matrix as an efficient carrier with enhanced specific surface area to prevent HAP from aggregation was desired. The sorption behavior of heavy metal (Cu(II), Cd(II), and Pb(II)) and pharmaceuticals (carbamazepine and tetracycline) on HBCs were analyzed given various geochemical conditions, including contact time, pH value, ionic strength, inferencing cations and anions, coexisting humic acid, and ambient temperature. HBCs could capture these pollutants efficiently from both simulated wastewaters and real waters. Combined with spectroscopic techniques, proper multiple dominant sorption mechanisms for each sorbate were elucidated separately. HBCs presented excellent reusability for the removal of these pollutants through six recycles, except for tetracycline. The results of this study provide meaningful insight into the proper integration of biochar-mineral composites for the management of aquatic heavy metals and pharmaceuticals.
Collapse
Affiliation(s)
- Xin Zhao
- Graduate Department, Civil Aviation Flight University of China, Guanghan 618307, China;
| | - Peiling Yuan
- Zhengzhou Key Laboratory of Low-Dimensional Quantum Materials and Devices, College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Peng
- Department of Ecology and Environment of Henan Province, Zhengzhou 450046, China;
| | - Xiang Meng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| | - Jiang Cheng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| |
Collapse
|
22
|
Soyekwo F, Wen H, Dan L, Liu C. Crumpled Globule-Heterotextured Polyamide Membrane Interlayered with Protein-Polyphenol Nanoaggregates for Enhanced Forward Osmosis Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24806-24819. [PMID: 35594151 DOI: 10.1021/acsami.2c05075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface modulation of polyamide structures and the development of nanochanneled membranes with excellent water transport properties are crucial for the separation performance enhancement of thin-film composite membranes. Here, we demonstrate the fabrication of a modular nanochannel-integrated polyamide network on a nanoporous interlayer membrane comprising Mxene-reinforced protein-polyphenol nanoaggregates. The research indicates that the confined growth of the polyamide matrix inside this hydrophilic sub-10 nm nanochannel nanoporous intermediate layer stiffened the interfacial channels, leading to the formation of a polyamide layer with a spatial distribution of a network of unique 3D crumpled globule-like nanostructures. The high specific surface area of such a morphology bestowed the membrane with increased filtration area while facilitating the nanofluidic transport of water molecules through the nanochanneled membrane structure, leading to enhanced water flux of up to 26.6 L m-2 h-1 (active layer facing the feed solution) and 41.0 L m-2 h-1 (active layer facing the draw solution) using 1.0 M NaCl as the draw solution. The membrane equally exhibited good treatment for organic solvent forward osmosis filtration and typical seawater desalination. Moreover, the hierarchical nanostructures induced antimicrobial activity by effectively reducing the biofilm formation of Gram-negative Escherichia coli bacteria. This work provides significant insights into the interfacial engineering and compatibility of the nanomaterials and the polymers in interlayer mixed-matrix membranes, which are environmentally sustainable and cost-effective for the fabrication of advanced forward osmosis membranes for water purification and osmotic energy applications.
Collapse
Affiliation(s)
- Faizal Soyekwo
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Hui Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Liao Dan
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
23
|
Yassari M, Shakeri A, Salehi H. ZIF-67 templated thin-film composite forward osmosis membrane: Importance of incorporation method on morphology and performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Wen H, Soyekwo F, Liu C. Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Patel K, Sutar AK, Maharana T. Microwave-assisted preparation of carboxylic graphene oxide-chitosan composite for adsorption of uranium and heavy toxic metals in water samples. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2045320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Alekha Kumar Sutar
- Department of Chemistry, Gangadhar Mehar University, Sambalpur, India
- Department of Chemistry, Ravenshaw University, Cuttack, India
| | | |
Collapse
|
26
|
Wu Y, Ye H, You C, Zhou W, Chen J, Xiao W, Garba ZN, Wang L, Yuan Z. Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Elakkiya S, Arthanareeswaran G. Evaluation of membrane tailored with biocompatible halloysite‒polyaniline nanomaterial for efficient removal of carcinogenic disinfection by‒products precursor from water. ENVIRONMENTAL RESEARCH 2022; 204:112408. [PMID: 34800534 DOI: 10.1016/j.envres.2021.112408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Humic acid (HA) is the main component of natural organic matter that generates carcinogenic by‒products during disinfection and its removal from water resources is challenging. Biocompatible halloysite (HNTs) nanomaterial decorated with polyaniline (HNTs‒PANI) was synthesized via polymerization technique. HNTs‒PANI was added to prepare polyethersulfone mixed matrix membranes (MMMs). The influence of HNTs‒PANI concentration on HA removal efficiency was studied by varying the HNTs‒PANI (0.5, 1 and 1.5 wt%). The characterization studies of MMMs revealed that the addition of HNTs‒PANI improved the morphology of the membranes, surface properties, chemical stability and thermal property. The amine and hydroxyl groups within the MMMs improved the membrane wettability. The addition of HNTs‒PANI within the MMMs had significantly enhanced the pure water flux and HA filtration. YHP2 MMM with 1 wt% of HNTs‒PANI demonstrated sieving coefficient of 0.10 and the highest HA removal efficiency of 91% greater than the neat PES membrane. Furthermore, the antifouling property of the MMMs was studied using HA as foulant. 1 wt% of HNTs‒PANI added MMM showed a high flux recovery ratio (94.9%) with low total fouling of 12% and low irreversible fouling of 5%, respectively. Thus, HNTs‒PANI was an efficient nanomaterial for enhancing the pure water flux, removal efficiency and antifouling property to treat water contaminated with HA.
Collapse
Affiliation(s)
- S Elakkiya
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| |
Collapse
|
28
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
29
|
Liu G, Wang M, Gao H, Cui C, Gao J. Spiropyran modified polyvinyl alcohol sponge as a light-responsive adsorbent for the removal of Pb(II) in aqueous solution. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Highly efficient and bifunctional Cd(II)-Organic Framework platform towards Pb(II), Cr(VI) detection and Cr(VI) photoreduction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Zhao Z, Shehzad MA, Wu B, Wang X, Yasmin A, Zhu Y, Wang X, He Y, Ge L, Li X, Xu T. Spray-deposited thin-film composite MOFs membranes for dyes removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|