1
|
Achôa GL, Mattos PA, Clements A, Roca Y, Brooks Z, Ferreira JRM, Canal R, Fernandes TL, Riera R, Amano MT, Hokugo A, Jarrahy R, Lenz E Silva GF, Bueno DF. A scoping review of graphene-based biomaterials for in vivo bone tissue engineering. J Biomater Appl 2023; 38:313-350. [PMID: 37493398 DOI: 10.1177/08853282231188805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The growing demand for more efficient materials for medical applications brought together two previously distinct fields: medicine and engineering. Regenerative medicine has evolved with the engineering contributions to improve materials and devices for medical use. In this regard, graphene is one of the most promising materials for bone tissue engineering and its potential for bone repair has been studied by several research groups. The aim of this study is to conduct a scoping review including articles published in the last 12 years (from 2010 to 2022) that have used graphene and its derivatives (graphene oxide and reduced graphene) in preclinical studies for bone tissue regeneration, searching in PubMed/MEDLINE, Embase, Web of Science, Cochrane Central, and clinicaltrials.gov (to confirm no study has started with clinical trial). Boolean searches were performed using the defined key words "bone" and "graphene", and manuscript abstracts were uploaded to Rayyan, a web-tool for systematic and scoping reviews. This scoping review was conducted based on Joanna Briggs Institute Manual for Scoping Reviews and the report follows the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Extension for Scoping Reviews (PRISMA-ScR) statement. After the search protocol and application of the inclusion criteria, 77 studies were selected and evaluated by five blinded researchers. Most of the selected studies used composite materials associated with graphene and its derivatives to natural and synthetic polymers, bioglass, and others. Although a variety of graphene materials were analyzed in these studies, they all concluded that graphene, its derivatives, and its composites improve bone repair processes by increasing osteoconductivity, osteoinductivity, new bone formation, and angiogenesis. Thus, this systematic review opens up new opportunities for the development of novel strategies for bone tissue engineering with graphene.
Collapse
Affiliation(s)
- Gustavo L Achôa
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | | | | | - Raul Canal
- Universidade Corporativa ANADEM, Brasília, Brazil
| | - Tiago L Fernandes
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Rachel Riera
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Mariane T Amano
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | - Daniela F Bueno
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Engenharia Metalúrgica e de Materiais, USP, São Paulo, Brazil
- Universidade Corporativa ANADEM, Brasília, Brazil
| |
Collapse
|
2
|
Hu F, Lu H, Wu C, Xu G, Shao Z, Gao L. Effects of pressure on the cross‐linking behavior of hyaluronic acid‐functionalized boric acid cross‐linked poly(vinyl alcohol) hydrogels. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
- Taizhou Medical New&Hi‐Tech Industrial Development Zone Taizhou People's Republic of China
| | - Changlei Wu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Guangshen Xu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Zhonglei Shao
- Faculty of Engineering University of Strathclyde Glasgow UK
| | - Li Gao
- Department of Gynaecology and Obstetrics The First Affiliated hospital of Xi'an Jiaotong University Xi'an JiaotongUniversity Xi' an People's Republic of China
| |
Collapse
|
3
|
Zhang Z, Ye Z, Hu F, Wang W, Zhang S, Gao L, Lu H. Double‐network polyvinyl alcohol composite hydrogel with self‐healing and low friction. J Appl Polym Sci 2022. [DOI: 10.1002/app.51563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhouqiang Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Zishuo Ye
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Shoujing Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Li Gao
- Department of Gynaecology and Obstetrics The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
- Department of Gynaecology and Obstetrics The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
4
|
Hu F, Lu H, Ye Z, Zhang S, Wang W, Gao L. Slow-release lubrication of artificial joints using self-healing polyvinyl alcohol/polyethylene glycol/ graphene oxide hydrogel. J Mech Behav Biomed Mater 2021; 124:104807. [PMID: 34492404 DOI: 10.1016/j.jmbbm.2021.104807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
New fabrication methods and lubrication materials must be developed to improve the lubrication performance of artificial joints and increase the lubrication duration. Herein, a novel polyvinyl alcohol/polyethylene glycol/graphene oxide (PVA/PEG/GO) hydrogel was prepared by a physical cross-linking method, and then the hydrogel and its sustained-release solution were used as lubricant for friction evaluation. The results demonstrated that the slow-release gel solution has good lubrication performance, and coefficient of friction (COF) is only 0.04, which is much lower than the COF of distilled water (about 0.08) under the same conditions. The structure characterization results revealed that no new materials are formed in the gel. The results of thermogravimetric analyses and differential scanning calorimetry demonstrated that the addition of GO may improve the network crosslinking structure of the PVA/PEG hydrogel and improve its mechanical strength. In addition, PVA/PEG/GO hydrogel has superior self-healing function. The self-healing hydrogel did not break again after being pulled under 200 G of weights. The PVA/PEG/GO hydrogel with excellent slow-release lubricating performance and self-healing properties provides a novel candidate for design of long-term lubricating artificial joints, and is expected to promote the progress of artificial joint lubrication applications.
Collapse
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China.
| | - Zishuo Ye
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Shoujing Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Li Gao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
5
|
Li X, Wang J, Duan X, Li Y, Fan X, Zhang G, Zhang F, Peng W. Fine-Tuning Radical/Nonradical Pathways on Graphene by Porous Engineering and Doping Strategies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05089] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xintong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide South Australia 5005, Australia
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Liu Y, Lu S, Yang H. One-step coating of Ni–Fe alloy outerwear on 1–3-dimensional nanomaterials by a novel technology. NEW J CHEM 2021. [DOI: 10.1039/d0nj05292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple one-step electrodeposition approach was developed to manufacture Ni–Fe alloy@1–3-dimensional core–shell nanomaterials using a novel technology.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Shiqing Lu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Haidong Yang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|