1
|
Zhao C, Lu D, Tian X, Xu J, Zhang B, Wu K, Yu H, Zhang H. Noncentrosymmetric Na 6Pb 3P 4S 16 and Centrosymmetric K 2M IIP 2S 6 (M II = Mg and Zn) Displaying Multiple Membered-Ring Configurations and Strong Optical Anisotropy. Inorg Chem 2023; 62:21487-21496. [PMID: 38055418 DOI: 10.1021/acs.inorgchem.3c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Three thiophosphates including noncentrosymmetric Na6Pb3P4S16 and centrosymmetric K2MIIP2S6 (MII = Mg and Zn) were successfully synthesized in vacuum-sealed silica tubes. Note that interesting multiple six membered-rings (6-MRs) including 6-NaS6-MRs and 6-KSn-MRs (n = 6 and 7) formed by A+-centered polyhedra were discovered in the structures of title thiophosphates and these MR-composed three-dimensional (3D) tunnels show great possibility to facilitate the filling of various structural blocks (such as zero-dimensional (0D) Pb3S10 trimers or one-dimensional (1D) (MIISn)n chains). Na6Pb3P4S16 exhibits the strongest nonlinear optical (NLO) response (5.4 × AgGaS2) with phase-matching (PM) behavior among the known Pb-based PM NLO sulfides, which is much larger than that of Pb3P2S8 (3.5 × AgGaS2); it was verified that such large second harmonic generation (SHG) response in Na6Pb3P4S16 can be attributed to the huge contribution of stereochemically active PbS4 units based on the SHG-density and dipole-moment calculations. Moreover, title thiophosphates show large birefringences (Δn = 0.102-0.21), which indicates that incorporation of [P2S6] dimers or polarized PbS4 units into structures provides positive benefits for the onset of strong optical anisotropy.
Collapse
Affiliation(s)
- Chenyao Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xinyu Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jingjing Xu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Chen ZX, Liu W, Guo SP. A review of structures and physical properties of rare earth chalcophosphates. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
4
|
Gao L, Wu X, Yang D, Tian X, Xu J, Zhang B, Wu K. M 6PS 5X (M = Ag, Cu; X = Cl, Br) chalcohalides exhibiting strong nonlinear optical responses and high laser damage resistances. Dalton Trans 2021; 50:17901-17905. [PMID: 34851337 DOI: 10.1039/d1dt03251h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of M6PS5X (M = Ag, Cu; X = Cl, Br) nonlinear optical (NLO) chalcohalides with special MS3X ligands have been synthesized in this work. Their critical optical performances were systematically measured and the research results show that all of them exhibit strong NLO responses (2.0-2.7 × commercial AgGaS2) and high laser-damage thresholds (1.7-2.3 × AgGaS2), indicating their potential application as good NLO candidates. Furthermore, first-principles calculations were used to study their inherent structure-property relationships and chalcohalides can be expected to be optimal systems for the exploration of new promising IR NLO crystals.
Collapse
Affiliation(s)
- Lihua Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Xiaowen Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Daqing Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Xinyu Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Jingjing Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| | - Kui Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| |
Collapse
|
5
|
Han D, Feng C, Du MH, Zhang T, Wang S, Tang G, Bein T, Ebert H. Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. J Am Chem Soc 2021; 143:12369-12379. [PMID: 34339219 DOI: 10.1021/jacs.1c06403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The emergence of halide double perovskites significantly increases the compositional space for lead-free and air-stable photovoltaic absorbers compared to halide perovskites. Nevertheless, most halide double perovskites exhibit oversized band gaps (>1.9 eV) or dipole-forbidden optical transition, which are unfavorable for efficient single-junction solar cell applications. The current device performance of halide double perovskite is still inferior to that of lead-based halide perovskites, such as CH3NH3PbI3 (MAPbI3). Here, by ion type inversion and anion ordering on perovskite lattice sites, two new classes of pnictogen-based quaternary antiperovskites with the formula of X6B2AA' and X6BB'A2 are designed. Phase stability and tunable band gaps in these quaternary antiperovskites are demonstrated based on first-principles calculations. Further photovoltaic-functionality-directed screening of these materials leads to the discovery of 5 stable compounds (Ca6N2AsSb, Ca6N2PSb, Sr6N2AsSb, Sr6N2PSb, and Ca6NPSb2) with suitable direct band gaps, small carrier effective masses and low exciton binding energies, and dipole-allowed strong optical absorption, which are favorable properties for a photovoltaic absorber material. The calculated theoretical maximum solar cell efficiencies based on these five compounds are all larger than 29%, comparable to or even higher than that of the MAPbI3 based solar cell. Our work reveals the huge potential of quaternary antiperovskites in the optoelectronic field and provides a new strategy to design lead-free and air-stable perovskite-based photovoltaic absorber materials.
Collapse
Affiliation(s)
- Dan Han
- Department of Chemistry, University of Munich, Munich D-81377, Germany
| | - Chunbao Feng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Mao-Hua Du
- Materials Science & Technology Division, Oak Ridge National Labortory, Oak Ridge, Tennessee 37831, United States
| | - Tao Zhang
- Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, P. R. China
| | - Shizhe Wang
- Department of Chemistry, University of Munich, Munich D-81377, Germany
| | - Gang Tang
- Theoretical Materials Physics, Q-MAT, CESAM, University of Liège, B-4000 Liège, Belgium
| | - Thomas Bein
- Department of Chemistry, University of Munich, Munich D-81377, Germany
| | - Hubert Ebert
- Department of Chemistry, University of Munich, Munich D-81377, Germany
| |
Collapse
|
6
|
Gao L, Chu Y, Wu X, Zhang B, Wu K. From thiophosphate to chalcohalide: mixed-anion AgS xCl y ligands concurrently enhancing nonlinear optical effects and laser-damage threshold. Chem Commun (Camb) 2021; 57:8218-8221. [PMID: 34308948 DOI: 10.1039/d1cc02656a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we propose a new design strategy that introduces unique mixed-anion AgSxCly ligands into thiophosphate to afford a successful synthesis of a promising Ag5PS4Cl2 IR NLO chalcohalide. Compared with chlorine-free Ag3PS4, Ag5PS4Cl2 undergoes overall performance enhancement and achieves a good balance between large NLO effect (2.0 × Ag3PS4) and high laser damage threshold (3.8 × Ag3PS4). Theoretical analysis further indicates that AgSxCly groups are the new superior NLO-active units since they can maintain the wide bandgap while concurrently making a great contribution to the origin of NLO effects. Therefore, the incorporation of AgSxCly groups into the crystal structure can be expected to be one feasible way to design new IR NLO candidates with excellent performance.
Collapse
Affiliation(s)
- Lihua Gao
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, China.
| | | | | | | | | |
Collapse
|
7
|
Yang Y, Zhang B, Wu X, Wu K. A series of M3PS4 (M = Ag, Cu and Ag/Cu) thiophosphates with diamond-like structures exhibiting large second harmonic generation responses and moderate ion conductivities. Dalton Trans 2021; 50:4129-4132. [DOI: 10.1039/d1dt00366f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diamond-like thiophosphates exhibiting large second harmonic generation responses and moderate ion conductivities were systematically studied.
Collapse
Affiliation(s)
- Ya Yang
- Key laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Bingbing Zhang
- Key laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Xiaowen Wu
- Key laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Kui Wu
- Key laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|