1
|
Cheng S, Wang Y, Zhang R, Wang H, Sun C, Wang T. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. SENSORS (BASEL, SWITZERLAND) 2023; 23:8309. [PMID: 37837139 PMCID: PMC10575277 DOI: 10.3390/s23198309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
In recent decades, the rapid development of the global economy has led to a substantial increase in energy consumption, subsequently resulting in the emission of a significant quantity of toxic gases into the environment. So far, gas sensors based on polymer field-effect transistors (PFETs), a highly practical and cost-efficient strategy, have garnered considerable attention, primarily attributed to their inherent advantages of offering a plethora of material choices, robust flexibility, and cost-effectiveness. Notably, the development of functional organic semiconductors (OSCs), such as poly(3-hexylthiophene-2,5-diyl) (P3HT), has been the subject of extensive scholarly investigation in recent years due to its widespread availability and remarkable sensing characteristics. This paper provides an exhaustive overview encompassing the production, functionalization strategies, and practical applications of gas sensors incorporating P3HT as the OSC layer. The exceptional sensing attributes and wide-ranging utility of P3HT position it as a promising candidate for improving PFET-based gas sensors.
Collapse
Affiliation(s)
| | | | | | | | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Kabra M, Kloxin CJ. CuAAC-methacrylate interpenetrating polymer network (IPN) properties modulated by visible-light photoinitiation. Polym Chem 2023; 14:3739-3748. [PMID: 37663952 PMCID: PMC10470441 DOI: 10.1039/d3py00507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interpenetrating polymer networks (IPNs) are a class of materials with interwoven polymers that exhibit unique blended or enhanced properties useful to a variety of applications, ranging from restorative protective materials to conductive membranes and hydrophobic adhesives. The IPN formation kinetics can play a critical role in the development of the underlying morphology and in turn the properties of the material. Dual photoinitiation of copper-catalyzed azide-alkyne (CuAAC) and radical mediated methacrylate polymerization chemistries enable the manipulation of IPN microstructure and properties by controlling the kinetics of IPN formation via the intensity of the initiating light. Specifically, azide and alkyne-based polyethylene glycol monomers and tetraethylene glycol dimethacrylate (TEGDMA) were polymerized in a single pot to form IPNs and the properties were evaluated as a function of the photoinitiating light intensity. Morphological differences as a function of intensity were observed in the IPNs as determined by thermomechanical properties and phase-contrast imaging in tapping mode atomic force microscopy (AFM). At moderate intensities (20 mW/cm2) of visible light (470 nm), the TEGDMA polymerization gels first and therefore forms the underlying network scaffold. At low intensities (0.2 mW/cm2), the CuAAC polymerization can gel first. The ability to switch sequence of gelation and IPN trajectory (simultaneous vs. sequential), affords control over phase separation behavior. Thus, light not only allows for spatial and temporal control over the IPN formation but also provides control over their thermomechanical properties, representing a route for facile IPNs design, synthesis, and application.
Collapse
Affiliation(s)
- Mukund Kabra
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Christopher J Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
3
|
Kweon H, Choi KY, Park HW, Lee R, Jeong U, Kim MJ, Hong H, Ha B, Lee S, Kwon JY, Chung KB, Kang MS, Lee H, Kim DH. Silicone engineered anisotropic lithography for ultrahigh-density OLEDs. Nat Commun 2022; 13:6775. [PMID: 36509734 PMCID: PMC9744739 DOI: 10.1038/s41467-022-34531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Ultrahigh-resolution patterning with high-throughput and high-fidelity is highly in demand for expanding the potential of organic light-emitting diodes (OLEDs) from mobile and TV displays into near-to-eye microdisplays. However, current patterning techniques so far suffer from low resolution, consecutive pattern for RGB pixelation, low pattern fidelity, and throughput issue. Here, we present a silicone engineered anisotropic lithography of the organic light-emitting semiconductor (OLES) that in-situ forms a non-volatile etch-blocking layer during reactive ion etching. This unique feature not only slows the etch rate but also enhances the anisotropy of etch direction, leading to gain delicate control in forming ultrahigh-density multicolor OLES patterns (up to 4500 pixels per inch) through photolithography. This patterning strategy inspired by silicon etching chemistry is expected to provide new insights into ultrahigh-density OLED microdisplays.
Collapse
Affiliation(s)
- Hyukmin Kweon
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Keun-Yeong Choi
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea
| | - Han Wool Park
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Ryungyu Lee
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea
| | - Ukjin Jeong
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Min Jung Kim
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Hyunmin Hong
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Borina Ha
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sein Lee
- grid.15444.300000 0004 0470 5454School of Integrated Technology, Yonsei University, Incheon, 21983 Republic of Korea
| | - Jang-Yeon Kwon
- grid.15444.300000 0004 0470 5454School of Integrated Technology, Yonsei University, Incheon, 21983 Republic of Korea
| | - Kwun-Bum Chung
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Moon Sung Kang
- grid.263736.50000 0001 0286 5954Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 Republic of Korea ,grid.263736.50000 0001 0286 5954Institute of Emergent Materials, Sogang University, Seoul, 04107 Republic of Korea
| | - Hojin Lee
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea ,grid.263765.30000 0004 0533 3568School of Electronic Engineering, Soongsil University, Seoul, 06978 Republic of Korea
| | - Do Hwan Kim
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Institute of Nano Science and Technology, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|