1
|
Zhang Y, Higashino T, Nishimura I, Imahori H. Umbrella-Shaped m-Terphenyls for Highly π-Extended Planar Dyes toward High-Performance Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67761-67770. [PMID: 39586774 DOI: 10.1021/acsami.4c15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Porphyrin dyes with π-extended structures, particularly those with aromatic fused designs, have garnered considerable attention as efficient sensitizers for dye-sensitized solar cells (DCCSs). However, their photovoltaic performance has often been limited due to high aggregation tendencies caused by strong π-π interactions and charge recombination processes. Since m-terphenyls can be used as effective sterically protecting groups, the incorporation of umbrella-shaped m-terphenyls on the top of porphyrin dyes could provide an effective approach to unlock the full potential of highly π-extended porphyrin dyes. In this study, we report new fused porphyrin dyes, T-Ph, T-tBuPh, TT-Ph, and TT-tBuPh, introducing m-terphenyl groups. This innovative design ensures both blocking effects on dye aggregation on TiO2 and charge recombination against redox shuttles. Under the optimized conditions, DSSCs using thiophene-fused porphyrins T-Ph and T-tBuPh achieved a remarkable power conversion efficiency (PCE) of 11.5%. This is high compared to those with reference porphyrins, GY50 possessing steric hindrance due to the orthogonal orientation of a V-shaped diarylamino group to the porphyrin plane and DfZnP without the bulky umbrella-shaped m-terphenyl, demonstrating the proof of our concept. More importantly, the cosensitized DSSC using T-tBuPh and the complementary dye XY1B afforded the highest PCE of 12.3% ever reported for DSSCs with fused porphyrin dyes. This demonstrates that the "umbrella-shaped m-terphenyl" design is an attractive methodology for enhancing the photovoltaic performance of DSSCs with highly π-extended planar dyes, especially fused porphyrin dyes.
Collapse
Affiliation(s)
- Yuzhe Zhang
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Issei Nishimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Kyoto 606-8316, Japan
| |
Collapse
|
2
|
Huang S, Li Q, Li S, Li C, Tan H, Xie Y. Recent advances in the approaches for improving the photovoltaic performance of porphyrin-based DSSCs. Chem Commun (Camb) 2024; 60:4521-4536. [PMID: 38592027 DOI: 10.1039/d3cc06299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Among other photovoltaic techniques including perovskite solar cells and organic solar cells, dye-sensitized solar cells (DSSCs) are considered to be a potential alternative to conventional silicon solar cells. Porphyrins are promising dyes with the properties of easy modification and superior light-harvesting capability. However, porphyrin dyes still suffer from a number of unfavorable aspects, which need to be addressed in order to improve the photovoltaic performance. This feature article briefly summarizes the recent progress in improving the Voc and Jsc of porphyrin-based DSSCs in terms of molecular engineering by modifying the porphyrin macrocycle, donor and acceptor moieties of the porphyrin dyes, coadsorption of the porphrin dyes with bulky coadsorbents like chenodeoxycholic acid (CDCA), and cosensitization of the porphyrin dyes with metal-free organic dyes. Notably, concerted companion (CC) dyes are described in detail, which have been constructed by linking a porphyrin dye subunit and a metal-free organic dye subunit with flexible alkoxy chains to achieve panchromatic absorption and concerted enhancement of Voc and Jsc. In one sentence, this article is expected to provide further insights into the development of high performance DSSCs through the design and syntheses of efficient porphyrin dyes and CC dyes in combination with device optimization to achieve simultaneously elevated Voc and Jsc, which may inspire and promote further progress in the commercialization of the DSSCs.
Collapse
Affiliation(s)
- Shucheng Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Haijun Tan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Luo J, Lu Q, Li Q, Li Z, Wang Y, Wu X, Li C, Xie Y. Efficient Solar Cells Based on Porphyrin and Concerted Companion Dyes Featuring Benzo 12-Crown-4 for Suppressing Charge Recombination and Enhancing Dye Loading. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41569-41579. [PMID: 37608739 DOI: 10.1021/acsami.3c09187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In recent years, various porphyrin dyes have been designed to develop efficient dye-sensitized solar cells (DSSCs). Based on our previously reported porphyrin dye XW43, which contains a phenothiazine donor with two diethylene glycol (DEG)-derived substituents, we herein report a porphyrin dye XW89 by introducing a benzo 12-crown-4 (BCE) unit onto the N atom of the phenothiazine donor. On this basis, XW90 and XW91 have been synthesized by replacing a DEG chain in XW89 with two DEG chains and a 12-crown-4 unit, respectively. For iodine electrolyte-based DSSCs, dyes XW89-XW91 exhibit VOC values of 765-779 mV, higher than that of XW43 (755 mV), which may be related to the strong capability of the BCE group in binding Li+ and thus suppressing the downward shift of the TiO2 conduction band and interfacial charge recombination. Moreover, the smaller size of 12-crown-4 than the DEG unit enables higher adsorption amounts of the dyes than XW43, contributing to an enhanced JSC value. Due to the presence of two BCE units, dye XW91 exhibits the highest dye loading amount and JSC of 1.86 × 10-7 mol cm-2 and 19.79 mA cm-2, respectively, affording a high PCE of 11.1%. To further enhance the light-harvesting ability, a concerted companion (CC) dye XW92 has been constructed by linking the two subdye units corresponding to the porphyrin dye XW91 and an organic dye. As a result, XW92 affords an enhanced JSC and efficiency. Further coadsorption of XW92 with chenodeoxycholic acid achieved the highest efficiency of 12.1%. This work provides an effective approach for fabricating efficient DSSCs sensitized by porphyrin and CC dyes based on the introduction of crown ether units with smaller sizes and stronger Li+ affinities.
Collapse
Affiliation(s)
- Jiaxin Luo
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qingjun Lu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhemin Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Location effect of triptycene on the photovoltaic performance of carbazole-based dyes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Revealing the photoelectric performance and multistep electron transfer mechanism in D-A-π-A dyes coupled with a chlorophyll derivative for co-sensitized solar cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Wang X, Wang Y, Zou J, Luo J, Li C, Xie Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. CHEMSUSCHEM 2022; 15:e202201116. [PMID: 35702052 DOI: 10.1002/cssc.202201116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
In this work, organic concerted companion (CC) dyes CCOD-1 and CCOD-2 were constructed by covalently linking two organic dye units with complementary absorption spectra. Both CC dyes exhibited intense absorption from 300 to 650 nm with the band edges extended to 700 nm. These CC dyes were used to fabricate dye-sensitized solar cells (DSSCs), and the photovoltaic performance was investigated using different light sources. CCOD-2 possessed bulkier outer shelter than CCOD-1 owing to the longer carbon chains (C12 ) at the donor moiety, and thus it had stronger anti-aggregation and anti-charge-recombination ability. Under simulated sunlight (AM1.5G), CCOD-2 exhibited enhanced photovoltaic behavior with an open-circuit voltage (VOC ) of 759 mV, short-circuit current density (JSC ) of 19.23 mA ⋅ cm-2 , and power conversion efficiency (PCE) of 10.4 %, respectively. Notably, under the illumination of the indoor T5 fluorescent lamp (2500 lux), CCOD-2 afforded an enhanced PCE of 28.0 % with remarkable VOC and JSC of 692 mV and 0.424 mA cm-2 , respectively. Notably, the PCE achieved for CCOD-2 outperformed those of the reference sensitizer N719 and our previously reported CC dyes XW61 and XW70-C8 under the same indoor lamp conditions. In summary, the novel organic CC dyes developed in this work were demonstrated to be promising for fabricating DSSCs to efficiently harvest the energy of indoor lamps.
Collapse
Affiliation(s)
- Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Zou J, Wang Y, Baryshnikov G, Luo J, Wang X, Ågren H, Li C, Xie Y. Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33274-33284. [PMID: 35834394 DOI: 10.1021/acsami.2c07950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To develop efficient dye-sensitized solar cells (DSSCs), concerted companion (CC) dyes XW60-XW63 constructed from the covalent linkage of a strapped porphyrin dye unit and an organic dye unit have been reported to exhibit panchromatic absorption and excellent photovoltaic performance. However, these CC dyes only afforded moderate VOC values of ca. 763 mV, demonstrating relatively weak antiaggregation ability, which remains an obstacle for further enhancing the photovoltaic behavior. To address this problem, we herein develop porphyrin dyes XW77-XW80 with the macrocycles wrapped with alkoxy chains of various lengths (OC6H13-OC22H45) and the corresponding CC dyes XW81-XW84 containing these porphyrin dye units. Interestingly, the new CC dyes XW81-XW83 exhibit increasing VOC from 745 to 784 mV with the chain lengths extended from C6 to C18, and a lowered VOC of 762 mV was obtained for XW84 when the chain length was further extended to C22. As a result, XW83 afforded the highest PCE of 12.2%, which is, to the best of our knowledge, the record efficiency for the iodine electrolyte-based solar cells sensitized with a single dye. These results can be rationalized by the so-called doubly concerted companion (DCC) effects, that is, the two subdye units exhibit not only complementary absorption but also concerted antiaggregation with the long wrapping chains on the porphyrins unit simultaneously protecting the porphyrin macrocycle and the neighboring organic subdye unit, thus affording panchromatic absorption and strong antiaggregation and anticharge-recombination ability. These results provide a new approach for constructing a class of DCC dyes to achieve high-performance DSSCs without using any antiaggregating coadsorbent or absorption-enhancing cosensitizer.
Collapse
Affiliation(s)
- Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala 751 20, Sweden
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Yang C, Song P, El-Shishtawy RM, Ma F, Li Y. Photovoltaic performance and power conversion efficiency prediction of double fence porphyrins. Phys Chem Chem Phys 2021; 23:27042-27058. [PMID: 34847208 DOI: 10.1039/d1cp03593b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To explore high efficiency dye-sensitized solar cells (DSSCs), two experimentally derived (single fence and double fence porphyrins) and two theoretically designed zinc porphyrin molecules with D-D-π-A-A configurations were studied. Density functional theory and time-dependent density functional theory were employed to simulate these two experimental dyes and dye@TiO2 systems to understand why the double fence porphyrin molecule exhibits better photovoltaic performance than the single fence porphyrin molecule. For the short-circuit current (JSC), the various parameters that affected the experimental magnitude of JSC were analyzed from different aspects of absorption, charge transfer and chemical parameters as well as an electron injection process. The almost equal open-circuit voltages (VOC) in the experiment were predicted by theoretical VOC calculations. Our model predicted power conversion efficiencies (PCEs) of 1.993% and 10.866% for the single and double fence molecules, respectively, which are in accordance with the experimental values of 3.48% and 10.69%, respectively. In addition, one designed two new molecules based on the double fence porphyrin molecule with a 2-methyl-2H-benzo[d][1,2,3]triazole (BTA) unit bearing one fluorine and two fluorine atoms as the guest acceptor, respectively. Compared to the original molecules, the engineered molecules significantly improved the photovoltaic parameters, JSC and VOC, thereby causing excellent PCEs. The most outstanding designed molecule reached a PCE of 12.155%, and is considered a candidate dye for high-efficiency DSSC. This study provides insights into the photoelectric properties of single and double fence porphyrins. It also demonstrated that the strong electron-withdrawing ability of fluorine atoms would enhance the photovoltaic performance and provide a guideline for the further design of double fence porphyrins.
Collapse
Affiliation(s)
- Canpu Yang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Saudi Arabia.
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|