1
|
Wei Q, Sun W, Zhang Z, Zhou G, Zhang Z. High thermal conductive and photothermal phase change material microcapsules via cellulose nanocrystal stabilized Pickering emulsion for solar harvesting and thermal energy storage. Int J Biol Macromol 2025; 284:138162. [PMID: 39613077 DOI: 10.1016/j.ijbiomac.2024.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Phase change materials (PCMs) are promising for thermal energy storage due to their high latent enthalpy and constant phase change temperature. However, organic PCMs suffer from leaking, low thermal conductivity, and flammability. Herein, high thermal conductivity, photothermal and flame-proof docosane microcapsules with melamine-formaldehyde (MF) and polypyrrole (PPy) (C22-CMFP) were reported with cellulose nanocrystal (CNC) stabilized Pickering emulsion droplets as templates through in-situ polymerization. CNCs showed outstanding C22 Pickering emulsifying ability with the presence of NaCl and provided ideal templates for C22 microcapsules. The obtained C22-CMFP microcapsules displayed high enthalpy (205.7 J/g), C22 core ratio (86.1 %), and stability. The C22-CMFP microcapsules retained an outstanding enthalpy remaining ratio (98.9 %) after 100 times cooling/heating cycles and could tolerate 100 °C for 12 h without leaking due to the robust hybrid CMFP shell. PPy significantly improved the thermal conductivity and photothermal conversion efficiency of C22-CMFP microcapsules. The C22-CMFP microcapsules exhibited a high thermal conductivity of 0.683 W/(m·K). The maximum temperature of C22-CMFP microcapsules under light irradiation for 18 min was 60.4 °C. Moreover, C22-CMFP microcapsules showed superb flame-proof properties. This study provides a facile approach to fabricate high enthalpy, stable, thermal conductive, photothermal, and flame-proof PCM microcapsules for solar harvesting and thermal energy storage.
Collapse
Affiliation(s)
- Qiang Wei
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wang Sun
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhe Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Huang H, Cong HT, Lin Z, Liao L, Shuai CX, Qu N, Luo Y, Guo S, Xu QC, Bai H, Jiang Y. Manipulation of Conducting Polymer Hydrogels with Different Shapes and Related Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309575. [PMID: 38279627 DOI: 10.1002/smll.202309575] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.
Collapse
Affiliation(s)
- Hao Huang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hong-Tao Cong
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Longhui Liao
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Chen-Xi Shuai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Nuo Qu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Yujiao Luo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Shengshi Guo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Chi Xu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Yuan Jiang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
3
|
Zhao L, Zhang H, Tang N, Li MH, Hu J. Natural Phytic Acid-Assisted Polyaniline/Poly(vinyl alcohol) Hydrogel Showing Self-Reinforcing Features. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41927-41936. [PMID: 37615547 DOI: 10.1021/acsami.3c09032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Polyaniline (PANi) hydrogels that combine advantages of hydrogels and conductive PANi have recently emerged in areas of wearable devices and personal healthcare. Nevertheless, their mechanical performance often gradually degrades after being used for a period, caused by destruction of the inner structures when external forces are applied. Inspired by biological structures with persistent durability, we develop here a phytic acid-assisted PANi/poly(vinyl alcohol) (PVA) hydrogel that shows self-reinforcing features. As a natural product holding plenty of phosphate groups, phytic acid (PA) plays two crucial roles when preparing this hydrogel: (1) aniline is salinized by PA in aqueous solution to promote in situ polymerization, making the resulting PANi conductive; (2) PA/PANi particles form hydrogen bonds with PVA, acting as stress concentration points to induce structure orientation. The optimal PVA/PA/PANi hydrogel displays dark green color with a uniform distribution of PA/PANi particles. After experiencing repetitive 4 × 100 stretching at a strain of 10%, the hydrogel exhibits an enhanced fracture strength (20.35 MPa), Young's modulus (22.66 MPa), and toughness (36.24 MJ·m-3) compared with the original hydrogel. This self-reinforcing feature is mainly attributed to the formation of anisotropic structures fixed by hydrogen bonds between PA/PANi particles and PVA chains upon repetitive external forces. Moreover, anisotropic structures can be disassembled by swelling the post-stretched hydrogel in water, and the swollen hydrogel shows similar self-reinforcing behaviors. The good mechanical durability and reusable characteristics make the PVA/PA/PANi hydrogel a reliable strain sensor. This work provides a structural growing-reviving approach for conductive hydrogels with persistent durability.
Collapse
Affiliation(s)
- Lianjie Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| |
Collapse
|
4
|
Xie X, Xu Z, Yu X, Jiang H, Li H, Feng W. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat Commun 2023; 14:4289. [PMID: 37463898 DOI: 10.1038/s41467-023-40004-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Conductive hydrogels require tunable mechanical properties, high conductivity and complicated 3D structures for advanced functionality in (bio)applications. Here, we report a straightforward strategy to construct 3D conductive hydrogels by programable printing of aqueous inks rich in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inside of oil. In this liquid-in-liquid printing method, assemblies of PEDOT:PSS colloidal particles originating from the aqueous phase and polydimethylsiloxane surfactants from the other form an elastic film at the liquid-liquid interface, allowing trapping of the hydrogel precursor inks in the designed 3D nonequilibrium shapes for subsequent gelation and/or chemical cross-linking. Conductivities up to 301 S m-1 are achieved for a low PEDOT:PSS content of 9 mg mL-1 in two interpenetrating hydrogel networks. The effortless printability enables us to tune the hydrogels' components and mechanical properties, thus facilitating the use of these conductive hydrogels as electromicrofluidic devices and to customize near-field communication (NFC) implantable biochips in the future.
Collapse
Affiliation(s)
- Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhonggang Xu
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Yu
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
5
|
Ren Z, Xu G, Wang B, Song S, Hao T, Liu D, Zhang Y, Zhao J, Zhang L, Li Y. Polyaniline-Based Infrared Dynamic Patterned Encoder with Multiple Thermal Radiation Characteristics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884015 DOI: 10.1021/acsami.2c19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A high-level infrared dynamic patterned encoder (IR-DPE) possesses prospective applications for energy-harvesting and information, but a simple and reliable method for fabrication remains challenging. Herein, we first report an IR-DPE with multiple thermal radiation characteristics based on polyaniline (PANI). Specifically, the electron-beam evaporation technique is introduced to obtain the divanadium pentoxide (V2O5) coating, and then the V2O5 film acts as an oxidant to drive in situ polymerization of the PANI film. During the process, we experimentally explore the relationship between the thickness of V2O5 and the emissivity of PANI to obtain up to six emissivity levels and achieve the IR pattern integrated into multiple thermal radiation characteristics. The device shows multiple thermal radiation characteristics at the oxidized state, realizing a pattern visible with the IR camera and the same thermal radiation properties at the reduced state, leading to the pattern concealed in the IR regime. In addition, the highest emissivity tunability of the device is to be tuned from 0.40 to 0.82 (Δε = 0.42) at 2.5-25 μm. Meanwhile, the device exhibits a maximum temperature control of up to 5.9 °C. The results show the enormous potential of IR-DPEs for IR information transfer and thermal management.
Collapse
Affiliation(s)
- Zichen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Gaoping Xu
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Bo Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shanshan Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tingting Hao
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongqi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yike Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
6
|
Kedir CN, Salinas-Torres D, Quintero-Jaime A, Benyoucef A, Morallon E. Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their application in hybrid supercapacitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Gao S, Zhao Y, Pang H, Wu L, Wen M, Liao B. Unidirectional Diffusion Interface for Controllable Synthesis of Soluble Conjugated Copolymers without Solubilizing Alkyl Substituents. ChemistrySelect 2021. [DOI: 10.1002/slct.202103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuxi Gao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Yifang Zhao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Hao Pang
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Lian Wu
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Mingtong Wen
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Bing Liao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| |
Collapse
|
8
|
Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater Sci 2021; 10:614-632. [PMID: 34797359 DOI: 10.1039/d1bm01136g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wearable sensors have been widely studied because of their small size, light weight, and potential for the noninvasive tracking and monitoring of human physiological information. Wearable flexible sensors generally consist of two parts: a flexible substrate in contact with the skin and a signal processing module. At present, wearable electronics cover many fields, such as machinery, physics, chemistry, materials science, and biomedicine. The design concept and selection of materials are very important to the function of a sensor. In this review, we summarize the latest developments in flexible materials for wearable sensors, including developments in flexible materials, electrode materials, and new flexible biodegradable materials, and describe the important role of innovation in material and sensor design in the development of wearable flexible sensors. Strategies and challenges related to the improvement of the performances of wearable flexible sensors, as well as the development prospects of wearable devices based on flexible materials, are also discussed.
Collapse
Affiliation(s)
- Hengxin Liu
- Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical and Automotive Engineering, Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Li Wang
- Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical and Automotive Engineering, Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Yihua Feng
- Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical and Automotive Engineering, Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| |
Collapse
|