1
|
Datta K, Khadilkar P, Zhang H, LaFollette DK, Rojas-Gatjens E, Li R, Hu G, Correa-Baena JP. Dimensional Control in Phase-Pure Coevaporated Quasi-2D Ruddlesden-Popper Structures. J Am Chem Soc 2025; 147:16119-16128. [PMID: 40299752 DOI: 10.1021/jacs.4c18641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Fast, uncontrolled crystallization with several competing pathways makes solution-processing of phase-pure quasi-two-dimensional (quasi-2D) metal halide Ruddlesden-Popper thin films challenging. Typically, solution-processing results in the formation of different structural phases with varying dimensionality ranging from 2D, to quasi-2D, and 3D, introducing bandgap disorder and inhibiting charge transport. In this work, we eliminate interactions between precursor salts and solvents by using controlled thermal coevaporation to grow quasi-2D thin films that show high phase purity and narrow phase distribution. We study the structural landscape using synchrotron-based X-ray scattering and charge-carrier dynamics using ultrafast pump-probe spectroscopy. We then demonstrate a strategy to control the crystallographic phase of the film through phosphonic acid-based surface modification. We use density functional theory to study the interactions between propylphosphonic acid and the organic precursors and find that the interactions of loosely bound phosphonic acid molecules with evaporated precursors, followed by the migration of phosphonic acids through the deposited thin film, dictate the film structure between 2D and quasi-2D phases. These findings introduce new solvent-free methods for the fabrication of phase-pure quasi-2D Ruddlesden-Popper thin films and control phase selectivity across different dimensional (2D and quasi-2D) structures.
Collapse
Affiliation(s)
- Kunal Datta
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Pranav Khadilkar
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States of America
| | - Diana K LaFollette
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Esteban Rojas-Gatjens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States of America
| | - Guoxiang Hu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| |
Collapse
|
2
|
Liu S, Akram W, Ye F, Jin J, Niu F, Ahmed S, Ouyang Z, Dong SC, Li G. Förster Resonance Energy Transfer in Metal Halide Perovskite: Current Status and Future Prospects. ChemistryOpen 2025; 14:e202400118. [PMID: 39628340 DOI: 10.1002/open.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/03/2024] [Indexed: 03/11/2025] Open
Abstract
Förster Resonance Energy Transfer (FRET) is a non-radiative energy transfer process in a donor-acceptor system and has applications in various fields, such as single-molecule investigations, biosensor creation, and deoxyribonucleic acid (DNA) mechanics research. The investigation of FRET processes in metal halide perovskites has also attracted great attention from the community. The review aims to provide an up-to-date study of FRET in the context of perovskite systems. First, we discuss the fundamentals of FRET process, and then summarize the recent progress of FRET phenomenon in perovskite-perovskite, perovskite-inorganic fluorophores, perovskite-organic fluorophores, and organic fluorophores-perovskite systems. Finally, we speculate on the future prospects of roles of FRET in the implications for the overall performance of optoelectronic devices based on these systems, as well as the challenges in maximizing FRET efficiency.
Collapse
Affiliation(s)
- Siyang Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon,999077, Hong Kong
- School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, 518000, China
| | - Waseem Akram
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fanghao Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, 518000, China
| | - JingCheng Jin
- School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, 518000, China
| | - Fangfang Niu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shakeel Ahmed
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengbiao Ouyang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shou-Cheng Dong
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon,999077, Hong Kong
- WISPO Advanced Materials (Suzhou) Co., Ltd., Suzhou, 215000, China
| | - Guijun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon,999077, Hong Kong
| |
Collapse
|
3
|
Mishra P, Zhang M, Kar M, Hellgren M, Casula M, Lenz B, Chen AP, Recatala-Gomez J, Padhy SP, Cagnon Trouche M, Amara MR, Cheong I, Xing Z, Diederichs C, Sum TC, Duchamp M, Lam YM, Hippalgaonkar K. Synthesis of Machine Learning-Predicted Cs 2PbSnI 6 Double Perovskite Nanocrystals. ACS NANO 2025; 19:6107-6119. [PMID: 39913659 DOI: 10.1021/acsnano.4c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Halide perovskites are positioned at the forefront of photonics, optoelectronics, and photovoltaics, owing to their excellent optical properties, with emission wavelengths ranging from blue to near-infrared, and their ease in manufacturing. However, their vast composition space and the corresponding emission energies are still not fully mapped, and guided high-throughput screening that allows for targeted material synthesis would be desirable. To this end, we use experimental data from the literature to build a machine learning model, predicting the band gap of 10,920 possible compositions. Focusing on one of the most promising candidates, Cs2PbSnI6, we validate the model by synthesizing and characterizing nanocrystals of the ordered 2-2 elpasolite (double perovskite) structure. The measured photoluminescence spectra agree with both ab initio GW band structure calculations and the machine learning-predicted band gap. Therefore, our study not only provides a machine learning model for the composition space of the halide perovskites but also introduces elpasolite Cs2PbSnI6 as a promising candidate material for optoelectronic applications.
Collapse
Affiliation(s)
- Pritish Mishra
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
- Energy Research Institute at NTU, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore 637141, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Mengyuan Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Manaswita Kar
- IMPMC, Sorbonne Université, CNRS, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - Maria Hellgren
- IMPMC, Sorbonne Université, CNRS, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - Michele Casula
- IMPMC, Sorbonne Université, CNRS, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - Benjamin Lenz
- IMPMC, Sorbonne Université, CNRS, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - Andy Paul Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Jose Recatala-Gomez
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Shakti Prasad Padhy
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Marina Cagnon Trouche
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Mohamed-Raouf Amara
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Ivan Cheong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Zengshan Xing
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Carole Diederichs
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Tze Chien Sum
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martial Duchamp
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Technological University, Singapore 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Innovis, Singapore 138634, Singapore
| |
Collapse
|
4
|
Mane SS, Sinha A, Haram SK. Composition-dependent band structure parameters and band-gap bowing effect in a caesium lead mixed halide system: a cyclic voltammetry investigation. Phys Chem Chem Phys 2024; 26:22433-22441. [PMID: 39140509 DOI: 10.1039/d3cp05956a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cyclic voltammetry techniques have been employed to study the effect of halide substitution on the band edge parameters and band gap bowing effect in the case of CsPbX3 [X = I, Br, Cl] perovskite nanocrystals (PNCs). A series of compositions, viz. CsPbI3, CsPb(I-Br)3, CsPbBr3, CsPb(Br-Cl)3 and CsPbCl3, have been prepared by a hot injection method. From powder XRD and HR-TEM analysis, the formation of a highly crystalline, cubic phase of the perovskite having size in the range from 7-20 nm has been confirmed. Sharp peaks in the photoluminescence spectra suggest the formation of quantum dots with narrow-size distribution. The composition-dependent optical band gap (εopgap) for CsPbX3 displays a systematic shift towards shorter wavelengths from I to Br to Cl substitutions. The cyclic voltammetry investigation on the dispersion of PNCs in nonaqueous solvents yielded prominent cathodic and anodic peaks. These are correlated to conduction (e1) and valence band edge (h1) positions, respectively. The h1 has been decreased substantially with I to Br to Cl in CsPbX3. Meanwhile, e1 shows a marginal increase. The values derived from CV data demonstrated an excellent match with UVPS results, reported for a similar system. From these results, the quasi-particle gap (εqpgap) and exciton binding energy have been estimated for all the compositions. The negative band gap bowing effect noted in these PNCs is attributed to the size quantization effect. The band-edge parameters reported in this work will be valuable in matching these heterojunctions with suitable electron/hole transport materials for optimum device-performance.
Collapse
Affiliation(s)
- Suyog Sanjay Mane
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Rd, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Archisman Sinha
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Rd, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Santosh Krishna Haram
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Rd, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
5
|
Bala A, Kumar V. Enhanced stability of triple-halide perovskites CsPbI 3-x-yBr xCl y ( x and y = 0-0.024): understanding the role of Cl doping from ab initio calculations. Phys Chem Chem Phys 2023; 25:22989-23000. [PMID: 37594447 DOI: 10.1039/d3cp02476h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Doping of chloride in mixed iodide-bromide perovskites has been shown experimentally to suppress the photo-induced halide-ion segregation and enhance the stability of triple-halide perovskites (THP). However, a fundamental understanding of the effects of Cl doping is yet to be achieved especially when the doping concentration is low. Here we report the results of a state-of-the-art ab initio study of the atomic structure of THP by considering small doping concentrations of Br and Cl in CsPbI3. We find a reduction in the Pb-I bond lengths and tilting of PbI6 octahedra with Cl doping which lead to exothermic heat of mixing and therefore higher stability of THP. Moreover, using quasi-chemical approximation, our results show that there is a very small contribution of configurational entropy to Gibbs free energy at such low doping concentrations and at the operational temperature of 50 °C. This suggests that the favorable heat of mixing value is more important for the stability at low doping concentrations of Cl while a higher concentration of Cl increases the risk of halide segregation. Further calculations on Frenkel defect formation energy of I or Br-interstitial shows that the doping of Cl in I/Br mixed binary-compounds hinders the formation of Frenkel defects. These results support experiments and help to understand the role of chloride in suppressing the halide ion mobility with only a slight increase in the band gap. Accordingly, the THPs manifest a promising pathway for developing single-phase perovskites for solar cells and light-emitting diodes with improved performance and enhanced stability.
Collapse
Affiliation(s)
- Anu Bala
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
- Dr. Vijay Kumar Foundation, 1969, Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
6
|
Li Y, Yang C, Guo W, Duan T, Zhou Z, Zhou Y. All-inorganic perovskite solar cells featuring mixed group IVA cations. NANOSCALE 2023; 15:7249-7260. [PMID: 37017735 DOI: 10.1039/d3nr00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
All-inorganic perovskites are promising for solar cells owing to their potentially superior tolerance to environmental factors, as compared with their hybrid organic-inorganic counterparts. Over the past few years, all-inorganic perovskite solar cells (PSCs) have seen a dramatic improvement in certified power conversion efficiencies (PCEs), demonstrating their great potential for practical applications. Pb, Sn, and Ge are the most studied group IVA elements for perovskites. These group IVA cations share the same number of valence electrons and similarly exhibit the beneficial antibonding properties of lone-pair electrons when incorporated in the perovskite structure. Meanwhile, mixing these cations in all-inorganic perovskites provides opportunities for stabilizing the photoactive phase and tailoring the bandgap structure. In this mini-review, we analyze the structural and bandgap design principles for all-inorganic perovskites featuring mixed group IVA cations, discuss the updated progress in the corresponding PSCs, and finally provide perspectives on future research efforts faciliating the continued development of high-performance Pb-less and Pb-free all-inorganic PSCs.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Changyu Yang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Tianwei Duan
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China.
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yuanyuan Zhou
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
7
|
Yang W, Yu H, Dai L, Zhang Z, Gu A, Ban H, Sun Q, Chen S, Shen Y, Wang M. Fabrication of High-Quality CsPbI 3 Perovskite Films with Phosphorus Pentachloride Additive for Highly Stable Solar Cells. CHEMSUSCHEM 2023; 16:e202202061. [PMID: 36469039 DOI: 10.1002/cssc.202202061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Fully inorganic perovskite cesium lead triiodide (CsPbI3 ) has garnered much attention from researcher for photovoltaic application because of its excellent thermal stability compared with the inorganic-organic hybrid counterparts, along with the potential to serve as the top cell in tandem devices with silicon solar cell. However, the active α-phase cubic CsPbI3 spontaneously tends to transform into the non-perovskite δ-CsPbI3 when subjected to ambient condition. This work proposes an effective method to fabricate high-quality and stable α-phase cubic CsPbI3 films by introducing phosphorus pentachloride (PCl5 ) as an additive. PCl5 acts as colloidal binder for modulating crystallization dynamics of perovskites, resulting in high-quality film and a significantly suppressed phase transition. Finally, highly stable CsPbI3 perovskite solar cells can be achieved with a power conversion efficiency up to 17.85 %, and a long-term stability in N2 filled glove box.
Collapse
Affiliation(s)
- Wanpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haixuan Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Letian Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiguo Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Anjie Gu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huaxia Ban
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuangyin Chen
- Institute of New Energy, Wuhan, 430074, P. R. China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Scalon L, Freitas FS, Marques FDC, Nogueira AF. Tiny spots to light the future: advances in synthesis, properties, and application of perovskite nanocrystals in solar cells. NANOSCALE 2023; 15:907-941. [PMID: 36629010 DOI: 10.1039/d2nr05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.
Collapse
Affiliation(s)
- Lucas Scalon
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Flavio Santos Freitas
- Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais 30421-169, Brazil
| | | | - Ana Flávia Nogueira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
9
|
Avugadda S, Castelli A, Dhanabalan B, Fernandez T, Silvestri N, Collantes C, Baranov D, Imran M, Manna L, Pellegrino T, Arciniegas MP. Highly Emitting Perovskite Nanocrystals with 2-Year Stability in Water through an Automated Polymer Encapsulation for Bioimaging. ACS NANO 2022; 16:13657-13666. [PMID: 35914190 PMCID: PMC9527756 DOI: 10.1021/acsnano.2c01556] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/26/2022] [Indexed: 05/29/2023]
Abstract
Lead-based halide perovskite nanocrystals are highly luminescent materials, but their sensitivity to humid environments and their biotoxicity are still important challenges to solve. Here, we develop a stepwise approach to encapsulate representative CsPbBr3 nanocrystals into water-soluble polymer capsules. We show that our protocol can be extended to nanocrystals coated with different ligands, enabling an outstanding high photoluminescence quantum yield of ∼60% that is preserved over two years in capsules dispersed in water. We demonstrate that this on-bench strategy can be implemented on an automated platform with slight modifications, granting access to a faster and more reproducible fabrication process. Also, we reveal that the capsules can be exploited as photoluminescent probes for cell imaging at a dose as low as 0.3 μgPb/mL that is well below the toxicity threshold for Pb and Cs ions. Our approach contributes to expanding significantly the fields of applications of these luminescent materials including biology and biomedicine.
Collapse
Affiliation(s)
- Sahitya
Kumar Avugadda
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Castelli
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Balaji Dhanabalan
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Tamara Fernandez
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Niccolo Silvestri
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cynthia Collantes
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - Dmitry Baranov
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Muhammad Imran
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Milena P. Arciniegas
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
10
|
Straus DB, Cava RJ. Tuning the Band Gap in the Halide Perovskite CsPbBr 3 through Sr Substitution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34884-34890. [PMID: 35867850 DOI: 10.1021/acsami.2c09275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to continuously tune the band gap of a semiconductor allows its optical properties to be precisely tailored for specific applications. We demonstrate that the band gap of the halide perovskite CsPbBr3 can be continuously widened through homovalent substitution of Sr2+ for Pb2+ using solid-state synthesis, creating a material with the formula CsPb1-xSrxBr3 (0 ≤ x ≤ 1). Sr2+ and Pb2+ form a solid solution in CsPb1-xSrxBr3. Pure CsPbBr3 has a band gap of 2.29(2) eV, which increases to 2.64(3) eV for CsPb0.25Sr0.75Br3. The increase in band gap is clearly visible in the color change of the materials and is also confirmed by a shift in the photoluminescence. Density-functional theory calculations support the hypothesis that Sr incorporation widens the band gap without introducing mid-gap defect states. These results demonstrate that homovalent B-site alloying can be a viable method to tune the band gap of simple halide perovskites for absorptive and emissive applications such as color-tunable light-emitting diodes, tandem solar cells, and photodetectors.
Collapse
Affiliation(s)
- Daniel B Straus
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
11
|
Hu J, Zhang L, Song H, Lv Y. Evaluating the Band Gaps of Semiconductors by Cataluminescence. Anal Chem 2021; 93:14454-14461. [PMID: 34648272 DOI: 10.1021/acs.analchem.1c02913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rapid and efficient methodology for the evaluation of band gaps of semiconductors is highly desirable to analyze and assess the intrinsic properties and extending application scopes of semiconductor materials. Here, the negative correlation of the cataluminescence (CTL) signal in the presence of H2S and the band gap of Aurivillius-type perovskite oxide Bi4+nFenTi3O12+3n (n = 1-4) was confirmed, where the H2S-induced CTL signal acts as a probe to evaluate the band gaps of semiconductor materials. The related mechanism shows that the thermal energy obtained by heating makes the electrons in the valence band more easily excite into the conduction band of a narrower band gap material and further promotes electron transfer between the gaseous compounds and semiconductor materials, causing acceleration of the catalytic oxide process. In addition, the extensibility was further verified by exploring the layered perovskite containing other insertion structures, including Bi4+nConTi3O12+3n (n = 1-4), Bi5NiTi3O15, and Bi5MnTi3O15, which was also consistent with the results characterized by UV diffuse reflectance spectroscopy. The established CTL probe for band gap evaluation shows rapid response, is simple to operate, and is of low cost, which is expected to become an innovative alternative to the conventional band gap assessment approach.
Collapse
Affiliation(s)
- Jiaxi Hu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
12
|
Savill K, Ulatowski AM, Herz LM. Optoelectronic Properties of Tin-Lead Halide Perovskites. ACS ENERGY LETTERS 2021; 6:2413-2426. [PMID: 34307880 PMCID: PMC8291762 DOI: 10.1021/acsenergylett.1c00776] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
Mixed tin-lead halide perovskites have recently emerged as highly promising materials for efficient single- and multi-junction photovoltaic devices. This Focus Review discusses the optoelectronic properties that underpin this performance, clearly differentiating between intrinsic and defect-mediated mechanisms. We show that from a fundamental perspective, increasing tin fraction may cause increases in attainable charge-carrier mobilities, decreases in exciton binding energies, and potentially a slowing of charge-carrier cooling, all beneficial for photovoltaic applications. We discuss the mechanisms leading to significant bandgap bowing along the tin-lead series, which enables attractive near-infrared bandgaps at intermediate tin content. However, tin-rich stoichiometries still suffer from tin oxidation and vacancy formation which often obscures the fundamentally achievable performance, causing high background hole densities, accelerating charge-carrier recombination, lowering charge-carrier mobilities, and blue-shifting absorption onsets through the Burstein-Moss effect. We evaluate impacts on photovoltaic device performance, and conclude with an outlook on remaining challenges and promising future directions in this area.
Collapse
Affiliation(s)
- Kimberley
J. Savill
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, U.K.
| | - Aleksander M. Ulatowski
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, U.K.
| | - Laura M. Herz
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, U.K.
- TUM
Institute for Advanced Study, 85748 Garching bei München, Germany
| |
Collapse
|