1
|
Majola N, Jeena V. Benzylic C-H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules 2024; 29:6047. [PMID: 39770135 PMCID: PMC11678705 DOI: 10.3390/molecules29246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Benzylic C-H oxidation to form carbonyl compounds, such as ketones, is a fundamental transformation in organic synthesis as it allows for the preparation of versatile intermediates. In this review, we highlight the synthesis of aromatic ketones via catalytic, electrochemical, and photochemical oxidation of alkylarenes using different catalysts and oxidants in the past 5 years. Additionally, we also discuss the synthesis of heterocyclic molecules using benzylic C-H oxidation as a key step. These methods can potentially be used in medicinal, synthetic, and inorganic chemistry.
Collapse
Affiliation(s)
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| |
Collapse
|
2
|
Erdivan B, Calikyilmaz E, Bilgin S, Erdali AD, Gul DN, Ercan KE, Türkmen YE, Ozensoy E. Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C-H Activation: Catalyst Design Principles and Insights into Reaction Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60151-60165. [PMID: 39450826 PMCID: PMC11551905 DOI: 10.1021/acsami.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
A precious metal-free bimetallic FexMn1-x(OH)y hydroxide catalyst was developed that is capable of catalyzing aerobic C-H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na+ promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C-H activation performance as a function of the electronic, surface chemical, and crystal structure of FexMn1-x(OH)y bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, 1H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic FexMn1-x(OH)y hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe3+ and Mn3+ cationic sites (with minor contributions from Fe2+ and Mn2+ sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na+ species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe3+ and Mn3+ cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C-H bond (kH/kD = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C-H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.
Collapse
Affiliation(s)
- Beyzanur Erdivan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Eylul Calikyilmaz
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Suay Bilgin
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Ayse Dilay Erdali
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Damla Nur Gul
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Kerem Emre Ercan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- Roketsan
Inc., Elmadag, 06780 Ankara, Türkiye
| | - Yunus Emre Türkmen
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| | - Emrah Ozensoy
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| |
Collapse
|
3
|
Wang J, Su J, Zhao G, Liu D, Yuan H, Kuvarega AT, Mamba BB, Li H, Gui J. A facile method for preparing the CeMnO 3 catalyst with high activity and stability of toluene oxidation: The critical role of small crystal size and Mn 3+-O v-Ce 4+ sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134114. [PMID: 38547755 DOI: 10.1016/j.jhazmat.2024.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Volatile organic compounds (VOCs) cause severe environmental pollution and are potentially toxic to humans who have no defense against exposure. Catalytic oxidation of these compounds has thus become an interesting research topic. In this study, microcrystalline CeMnO3 catalysts were prepared by a precipitant-concentration-induced strategy and evaluated for the catalytic oxidation of toluene/benzene. The effect of crystal size on catalytic performance was confirmed by XRD, TEM, N2 adsorption-desorption, XPS, Raman, H2-TPR, and TPSR. The CeMnO3 catalyst with more Mn3+-Ov-Ce4+ active sites exhibited enhanced VOCs catalytic oxidation performance, lowest active energy, and highest turnover frequency, which was attributed to its larger surface area, lower crystal size, higher low-temperature reducibility, and presence of more oxygen defects. In-situ FTIR results suggested more oxygen vacancies can profoundly promote the conversion of benzoate to maleate species, the rate-determining step of toluene oxidation. The work provides a convenient and efficient strategy to prepare single-metal or multi-metal oxide catalysts with smaller crystal sizes for VOC oxidation or other oxidation reactions.
Collapse
Affiliation(s)
- Jianshen Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junming Su
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Gangguo Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Dan Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa.
| | - Hua Yuan
- Ningxia Coal Industry Co. Ltd., CHN ENERGY, Yinchuan 750011, China
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Hu Li
- Ningxia Coal Industry Co. Ltd., CHN ENERGY, Yinchuan 750011, China.
| | - Jianzhou Gui
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Farhang Y, Taheri-Nassaj E, Rezaei M. Improvement of CO Oxidation and CH 4 Combustion by Pd and Pt Partial Substitution on LaMn 0.5Cu 0.5O 3 Perovskite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15465-15473. [PMID: 37882466 DOI: 10.1021/acs.langmuir.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
LaMn0.5Cu0.5O3 (LMC) as the parent perovskite and Pd- and Pt-doped LaMn0.5Cu0.5O3 catalysts (LMCPd and LMCPt) instead of Cu were synthesized in a new solid-state synthesis technique at a low temperature. Perovskite lattice formation of the LMC catalyst was successfully performed at 600 °C. All perovskites were investigated by X-ray diffraction, HRTEM, O2-TPD, H2-TPR, BET, and XPS analyses. The prepared perovskites were used as heterogeneous catalysts for CO oxidation and methane combustion reactions. The catalytic performance of the LMC catalyst was noticeably enhanced via Pd and Pt substitution instead of Cu. The enhancement in the mobility of lattice oxygen and specific surface area has triggered this catalytic performance improvement, which play an important role in CO oxidation and methane combustion. The Mn 2p and Mn 3s XPS spectra showed that by doping Pd and Pt in the LMC perovskite, Mn was affected in different states and the Mn 3s peaks were only observed in the LMCPt catalyst. XPS spectra of the LMCPd1 sample showed a high oxidation state of Pd3+ or Pd4+, from which it can be concluded that Pd was successfully incorporated into the LMC perovskite lattice. The H2-TPR profiles of the LMCPd and LMCPt perovskites revealed that the reduction peaks of Cu and Mn were shifted to lower temperatures by increasing Pd and Pt partial substitution due to the synergetic effect of the cation and the H2-spillover effect of palladium and platinum.
Collapse
Affiliation(s)
- Yaghoub Farhang
- Department of Materials Science and Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 14115-111, Iran
| | - Ehsan Taheri-Nassaj
- Department of Materials Science and Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 14115-111, Iran
| | - Mehran Rezaei
- Faculty of Chemical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| |
Collapse
|
5
|
Xiao Y, Zhong L, Fan G, Li F. A-site defective La 2-xCuO 4 perovskite-type oxides for efficient oxidation of cyclohexylbenzene. Dalton Trans 2023; 52:14443-14452. [PMID: 37772348 DOI: 10.1039/d3dt01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Phenol production through the oxidation of cyclohexylbenzene (CHB) and the subsequent decomposition of tertiary hydroperoxide has attracted more and more attention. In this study, defective La2-xCuO4 perovskite-type oxide catalysts with tunable A-site deficient structures and abundant surface oxygen vacancies were developed for the liquid phase oxidation of CHB to produce cyclohexylbenzene-1-hydroperoxide (CHBHP). By tuning the amount of A-site La ions in the perovskite structure, more surface oxygen vacancies and Cu+ species were formed in catalysts. The A-site-deficient La1.9CuO4 catalyst achieved significant catalytic efficiency along with a high CHBHP yield of 27.6% at 48.6% CHB conversion under reaction conditions (i.e., 120 °C and 12 h), outperforming those of other transition metal-based catalysts previously reported in the literature. A series of structural characterization methods and catalytic reactions highlighted the crucial roles of surface oxygen vacancies and metal La and Cu ions in the oxidation process. It was revealed that metal ions favored CHB adsorption and activation, while surface oxygen vacancies facilitated the creation of active adsorbed oxygen species. The present study offers an opportunity for the future design of new high-efficiency heterogeneous catalyst systems for CHB oxidation to obtain phenol.
Collapse
Affiliation(s)
- Yanlin Xiao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lingyu Zhong
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoli Fan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Aihara T, Aoki W, Kiyohara S, Kumagai Y, Kamata K, Hara M. Nanosized Ti-Based Perovskite Oxides as Acid-Base Bifunctional Catalysts for Cyanosilylation of Carbonyl Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17957-17968. [PMID: 37010448 PMCID: PMC10103063 DOI: 10.1021/acsami.3c01629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.
Collapse
Affiliation(s)
- Takeshi Aihara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Wataru Aoki
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Shin Kiyohara
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yu Kumagai
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Song J, Hua M, Huang X, Ma J, Xie C, Han B. Robust Bio-derived Polyoxometalate Hybrid for Selective Aerobic Oxidation of Benzylic C(sp 3)–H Bonds. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Pham PT, Nguyen DK, Phan NTS, Le MV, Nguyen TT. Oxidative annulation of acetophenones and 2-aminobenzothiazoles catalyzed by reusable nickel-doped LaMnO 3 perovskites. RSC Adv 2023; 13:3341-3345. [PMID: 36756421 PMCID: PMC9869463 DOI: 10.1039/d2ra08045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Synthesis of imidazole[2,1-b]benzothiazoles often suffers from the use of pre-functionalized substrates and/or homogeneous, non-recyclable catalytic systems. Herein we report a method for direct coupling of acetophenones and 2-aminobenzothiazoles in the presence of reusable perovskites, namely LaMn0.95Ni0.05O3. Imidazole[2,1-b]benzothiazoles were obtained in moderate to good yields and contained an array of useful functionalities. Control experiments indicated that the perovskites played pivotal roles in halogenation and condensation steps.
Collapse
Affiliation(s)
- Phuong T. Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet Street, District 10Ho Chi Minh CityVietnam,Vietnam National University Ho Chi Minh City, Linh Trung WardHo Chi Minh CityVietnam
| | - Duyen K. Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet Street, District 10Ho Chi Minh CityVietnam,Vietnam National University Ho Chi Minh City, Linh Trung WardHo Chi Minh CityVietnam
| | - Nam T. S. Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet Street, District 10Ho Chi Minh CityVietnam,Vietnam National University Ho Chi Minh City, Linh Trung WardHo Chi Minh CityVietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet Street, District 10Ho Chi Minh CityVietnam,Vietnam National University Ho Chi Minh City, Linh Trung WardHo Chi Minh CityVietnam
| |
Collapse
|
9
|
Synthesis, characterization, and use of nanocast LaMnO3 perovskites in the catalytic production of imine by the gas-phase oxidative coupling of benzyl alcohol to aniline. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
10
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
11
|
Hayashi E, Tamura T, Aihara T, Kamata K, Hara M. Base-Assisted Aerobic C-H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg 6MnO 8 Nanoparticle Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6528-6537. [PMID: 35080862 DOI: 10.1021/acsami.1c20080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takatoshi Tamura
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
12
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|