1
|
Garcia MFL, Arzuza LCC, Neves GA, Loureiro FJA, Morales MA, Macedo DA, Lira HL, Menezes RR. Structure and Morphological Properties of Cobalt-Oxide-Based (Co 3O 4) Materials as Electrodes for Supercapacitors: A Brief Review. MATERIALS (BASEL, SWITZERLAND) 2025; 18:413. [PMID: 39859884 PMCID: PMC11766530 DOI: 10.3390/ma18020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Over the past 15 years, there has been a significant increase in the search for environmentally friendly energy sources, and transition-metal-based energy storage devices are leading the way in these new technologies. Supercapacitors are attractive in this regard due to their superior energy storage capabilities. Electrode materials, which are crucial components of supercapacitors, such as cobalt-oxide-based electrodes, have great qualities for achieving high supercapacitor performance. This brief review presents some basic concepts and recent findings on cobalt-based materials used to fabricate electrodes for supercapacitors. The text also clarifies how morphological characteristics typically influence certain properties. The inner surface of the electrode exhibits several properties that change to provide it a great boost in specific capacitance and charge storage. Porous structures with defined pore sizes and shapes and high surface areas are important features for improving electrochemical properties. Finally, we present some perspectives for the development of cobalt-oxide-based supercapacitors, focusing on their structure and properties.
Collapse
Affiliation(s)
- Maxwell F. L. Garcia
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil; (L.C.C.A.); (G.A.N.); (H.L.L.)
| | - Luis C. C. Arzuza
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil; (L.C.C.A.); (G.A.N.); (H.L.L.)
| | - Gelmires A. Neves
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil; (L.C.C.A.); (G.A.N.); (H.L.L.)
| | - Francisco J. A. Loureiro
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Marco A. Morales
- Department of Theorical and Experimental Physics, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil;
| | - Daniel A. Macedo
- Materials Science and Engineering Postgraduate Program, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Helio L. Lira
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil; (L.C.C.A.); (G.A.N.); (H.L.L.)
| | - Romualdo R. Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil; (L.C.C.A.); (G.A.N.); (H.L.L.)
| |
Collapse
|
2
|
Liu Q, Zhang C, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. Oxygen vacancies enhancing hierarchical NiCo 2S 4@MnO 2 electrode for flexible asymmetric supercapacitors. J Colloid Interface Sci 2025; 678:902-914. [PMID: 39270390 DOI: 10.1016/j.jcis.2024.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The limited energy density of supercapacitors hampers their widespread application in electronic devices. Metal oxides, employed as electrode materials, suffer from low conductivity and stability, prompting extensive research in recent years to enhance their electrochemical properties. Among these efforts, the construction of core-shell heterostructures and the utilization of oxygen vacancy (VO) engineering have emerged as pivotal strategies for improving material stability and ion diffusion rates. Herein, core-shell composites comprising NiCo2S4 nanospheres and MnO2 nanosheets are grown in situ on carbon cloth (CC), forming nanoflower clusters while introducing VO defects through a chemical reduction method. Density functional theory (DFT) results proves that the existence of VO effectively enhances electronic and structural properties of MnO2, thereby enhancing capacitive properties. The electrochemical test results show that NiCo2S4@MnO2-V3 exhibits excellent 1376 F g-1 mass capacitance and 2.06 F cm-2 area capacitance at 1 A g-1. Moreover, NiCo2S4@MnO2-V3//activated carbon (AC) asymmetric supercapacitor (ASC) can achieve an energy density of 39.7 Wh kg-1 at a power density of 775 W kg-1, and maintains 15.5 Wh kg-1 even at 7749.77 W kg-1. Capacitance retention is 73.1 % after 10,000 cycles at 5 A g-1, and coulombic efficiency reaches 100 %, demonstrating satisfactory cycle stability. In addition, the device's excellent flexibility offers broad application prospects in wearable electronic applications.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Chengjingmeng Zhang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| |
Collapse
|
3
|
Ashok Patil S, Jagdale PB, Barman N, Iqbal A, Sfeir A, Royer S, Thapa R, Kumar Samal A, Saxena M. Ultrathin, large area β-Ni(OH) 2 crystalline nanosheet as bifunctional electrode material for charge storage and oxygen evolution reaction. J Colloid Interface Sci 2024; 674:587-602. [PMID: 38945026 DOI: 10.1016/j.jcis.2024.06.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Bifunctional electrode materials are highly desirable for meeting increasing global energy demands and mitigating environmental impact. However, improving the atom-efficiency, scalability, and cost-effectiveness of storage systems, as well as optimizing conversion processes to enhance overall energy utilization and sustainability, remains a significant challenge for their application. Herein, we devised an optimized, facile, economic, and scalable synthesis of large area (cm2), ultrathin (∼2.9 ± 0.3 nm) electroactive nanosheet of β-Ni(OH)2, which acted as bifunctional electrode material for charge storage and oxygen evolution reaction (OER). The β-Ni(OH)2 nanosheet electrode shows the volumetric capacity of 2.82 Ah.cm-3(0.82 µAh.cm-2) at the current density of 0.2 mA.cm-2. The device shows a high capacity of 820 mAh.cm-3 with an ultrahigh volumetric energy density of 0.33 Wh.cm-3 at 275.86 W.cm-3 along with promising stability (30,000 cycles). Furthermore, the OER activity of ultrathin β-Ni(OH)2 exhibits an overpotential (η10) of 308 mV and a Tafel value of 42 mV dec-1 suggesting fast reaction kinetics. The mechanistic studies are enlightened through density functional theory (DFT), which reveals that additional electronic states near the Fermi level enhance activity for both capacitance and OER.
Collapse
Affiliation(s)
- Sayali Ashok Patil
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Pallavi B Jagdale
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Narad Barman
- Department of Physics, SRM University -AP, Andhra Pradesh 522 240, India
| | - Asif Iqbal
- Department of Physics, SRM University -AP, Andhra Pradesh 522 240, India
| | - Amanda Sfeir
- Université de Lille, CNRS, Centrale Lille, Université Artois, UMR 8181─UCCS─12 Unité de Catalyse et Chimie du Solide, Lille 59000, France
| | - Sébastien Royer
- Université de Lille, CNRS, Centrale Lille, Université Artois, UMR 8181─UCCS─12 Unité de Catalyse et Chimie du Solide, Lille 59000, France
| | - Ranjit Thapa
- Department of Physics, SRM University -AP, Andhra Pradesh 522 240, India
| | - Akshaya Kumar Samal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Ramanagara, Bangalore 562112, India.
| |
Collapse
|
4
|
Han S, Wang Z, Zhu W, Yang H, Yang L, Wang Y, Zou Z. ZIF-derived oxygen vacancy-rich Co 3O 4 for constructing an efficient Z-scheme heterojunction to boost photocatalytic water splitting. Dalton Trans 2024; 53:4737-4752. [PMID: 38363114 DOI: 10.1039/d3dt03706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
With ZIF-67 as the precursor, oxygen vacancy-rich Co3O4 nanoparticles were derived and anchored on the surface of 2D polyimide (PI) to construct a Z-scheme hybrid heterojunction (20ZP) through a simultaneous solvothermal in situ crystallization and polymerization strategy. XRD, XPS and EPR confirmed that both Co(III) and oxygen vacancies are formed during the low temperature conversion of ZIF-67 to Co3O4 nanoparticles that in turn accelerate the polymerization of PI. Synchronous crystallization makes the interfacial architecture intermetal and compact, inducing a strong interfacial electronic interaction between Co3O4 nanoparticles and PI. UV-vis DRS spectra and transient photocurrent response demonstrate that the incorporation of Co3O4 on polyimide not only extends the light absorption in the visible range, but also enhances the charge transfer rate. EIS, TRPL techniques and DFT calculations have confirmed that the photoinduced interfacial charge transfer pathway of this hybrid heterojunction characterized the Z-scheme in which the photoinduced electrons transfer from the conduction band of Co3O4 to the valence band of PI, significantly inhibiting the recombination of electrons and holes within PI. More importantly, the oxygen vacancies located below the conductor band of Co3O4 can deepen the band bending, improve the charge separation efficiency and accelerate electron transfer between Co3O4 and PI. This Z-scheme hybrid heterojunction structure can not only maintain the high reducing capacity of photoinduced electrons on the conductor band of PI, but also enhance the oxidative capacity of the heterojunction composite material, thus promoting the overall progress of the photocatalytic hydrogen release reaction.
Collapse
Affiliation(s)
- Susu Han
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Zejin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Wenbo Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Huaizhi Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Le Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
5
|
Liu S, Shi Y, Wang D, Zhang Q, Ma X, Yin Z, Zhou P, Wu L, Zhang M. Multiple synergies on cobalt-based spinel oxide nanowires for electrocatalytic oxygen evolution. J Colloid Interface Sci 2024; 655:685-692. [PMID: 37976741 DOI: 10.1016/j.jcis.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Cobalt-based spinel oxides have excellent oxygen evolution reaction (OER) activities and are cheap to produce; however, they have limited commercial applications due to their poor electrical conductivities and weak stabilities. Herein, we soaked Co3-xNixO4 nanowires in NaBH4 solutions, which endowed Co3-xNixO4 with significant oxygen vacancy content and decorated BOx motifs outside the Co3-xNixO4 nanowires. X-ray photoelectron spectroscopy and in situ Raman data suggest that these evolutions improved the conductivity, hydrophilicity, and increased active sites of the spinel oxides, which synergistically boosted their overall OER performances. This improved performance made the optimized BOx-covered Co2.1Ni0.9O4 nanowires generate a current density of 10 mA cm-2 when used for the OER at an overpotential of only 307 mV, maintaining excellent stability at 50 mA cm-2 for 24 h. This study provides a facile method for designing cobalt-based spinel oxide OER catalysts.
Collapse
Affiliation(s)
- Sirui Liu
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng 224005, PR China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Yuxin Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Di Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Qiulan Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China; Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, PR China.
| | - Zhuoxun Yin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Pengfei Zhou
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng 224005, PR China.
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
6
|
Wu X, Qiu Y, Yang B, Li J, Cai W, Qin Y, Kong Y, Yin ZZ. Fabrication of CoSe 2/CoP with rich selenium- and phosphorus-vacancies and heterogeneous interfaces for asymmetric supercapacitors. J Colloid Interface Sci 2023; 651:128-137. [PMID: 37542888 DOI: 10.1016/j.jcis.2023.07.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
CoSe2/CoP with rich Se- and P-vacancies and heterogeneous interfaces (v-CoSe2/CoP) is grown on the surface of nickel foam via a two-step strategy: electrodeposition and NaBH4 reduction, which can be used as the cathode material in asymmetric supercapacitors. The SEM characterization reveals the honeycomb-like structure of the v-CoSe2/CoP, and the results of EPR, XPS and HRTEM reveal the existence of anionic vacancies and heterogeneous interfaces in the v-CoSe2/CoP. The as-fabricated v-CoSe2/CoP exhibits high specific capacitance (3206 mF cm-2 at 1.0 mA cm-2) and cyclic stability (91 % capacitance retention after 2000 cycles). An asymmetric supercapacitor is assembled by using the v-CoSe2/CoP and activated carbon (AC) as cathode and anode materials, respectively, which displays a high energy density of 40.6 Wh kg-1 at the power density of 211.5 W kg-1. The outstanding electrochemical performances of the v-CoSe2/CoP might be ascribed to the synergistic effects of Se- and P-vacancies and the heterogeneous interfaces in the v-CoSe2/CoP.
Collapse
Affiliation(s)
- Xingyue Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yiping Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Qin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
7
|
Liu S, Shi Y, Xu L, Zhan W, Chen M, Pan X, Yao Y, Cai J, Zhang M, Ma X. Special NaBH 4 hydrolysis achieving multiple-surface-modifications promotes the high-throughput water oxidation of CoN nanowire arrays. Dalton Trans 2023. [PMID: 37387285 DOI: 10.1039/d3dt01339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Designing an excellent OER catalyst in an alkaline environment is severe yet essential for industrial H2 application under the electrochemical technique. This study has achieved multiple modifications on CoN nanowires, the classic OER catalyst, via a facile room-temperature NaBH4 spontaneous hydrolysis. This facile process simultaneously generates oxygen vacancies and robust BN species. It wraps hydrophilic BOx motifs on the OER response CoN nanowires, producing OER active Co-N-B species, increasing active numbers and guaranteeing structural stability. It suggests that a low NaBH4 concentration (0.1 mol L-1) treatment endows CoNNWAs/CC with excellent OER performance and robust structure, which can drive a current density of 50 mA cm-2 with only 325 mV overpotentials with more than 24 hours' durability. Even, the catalyst can drive 1000 mA cm-2 around 480 mV overpotential. This study allows a novel strategy for designing high-performance OER catalysts.
Collapse
Affiliation(s)
- Sirui Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Yuxin Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Lingling Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Weican Zhan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Meixi Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Xiaoyue Pan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Yuqing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Jiajie Cai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.
| |
Collapse
|
8
|
Synthesis of Co3O4@CNTs with oxygen vacancies on nickel foam for improved performance of asymmetric supercapacitor electrode. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ashish Kumar A, Dakeshwar Kumar V, Berdimurodov E. Recent trends in noble-metals based composite materials for supercapacitors: A comprehensive and development review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
11
|
Zhu X, Liu S. Al2O3-assisted synthesis of hollow CuCo2S4 nanospheres with rich sulfur vacancies for hybrid supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X. Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34781-34792. [PMID: 35867900 DOI: 10.1021/acsami.2c08903] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hui Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| | - Wei Pan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| |
Collapse
|
13
|
Surfactant-free synthesis of sub-10 nm Co3O4 in a rotating packed bed and its high catalytic activity for AP pyrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Liu S, Kang L, Hu J, Jung E, Henzie J, Alowasheeir A, Zhang J, Miao L, Yamauchi Y, Jun SC. Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect-Induced Manipulation toward Flexible Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104507. [PMID: 34821033 DOI: 10.1002/smll.202104507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Indexed: 05/20/2023]
Abstract
As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.
Collapse
Affiliation(s)
- Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jisong Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Euigeol Jung
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Joel Henzie
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ling Miao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
15
|
Wang C, Wu X, Qin Y, Kong Y. Reduced Mo-doped NiCo2O4 with rich oxygen vacancies as advanced electrode material in supercapacitors. Chem Commun (Camb) 2022; 58:5120-5123. [DOI: 10.1039/d2cc01215d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduced Mo-doped NiCo2O4 (R-Mo-NiCo2O4) was facilely prepared through a dual-defect strategy. Mo-doped NiCo layered double hydroxide (Mo-NiCo-LDH) was used as the precursor and calcined in an air atmosphere, and the...
Collapse
|
16
|
Zhang Q, Zhu J, Yang S, Chen L, Sun M, Yang X, Wang P, Li K, Zhao P. Co 2P decorated Co 3O 4 nanocomposites supported on carbon cloth with enhanced electrochemical performance for asymmetric supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00276k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective strategy is demonstrated to promote electrochemical performance by the combination of Co3O4 with Co2P to form a composite electrode.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Jie Zhu
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Sudong Yang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Maosong Sun
- Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning 530004, China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Peng Zhao
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| |
Collapse
|
17
|
Shi Z, Shen X, Zhang Z, Wang X, Gao N, Xu Z, Chen X, Liu X. Hierarchically urchin-like hollow NiCo 2S 4 prepared by a facile template-free method for high-performance supercapacitors. J Colloid Interface Sci 2021; 604:292-300. [PMID: 34265686 DOI: 10.1016/j.jcis.2021.06.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022]
Abstract
Hollow structures draw much attention for high energy density supercapacitors due to their large hollow cavities, high specific surface area, and low interfacial contact resistance. However, constructing hierarchical hollow structures remains a challenge. Herein, we reported a facile template-free method for a novel urchin-like hollow nickel cobalt sulfide (NiCo2S4). The hollow interior and urchin exterior remarkably improved the specific capacitance and accommodated structural collapse caused by electrochemical reactions. Owing to these features, the urchin-like hollow NiCo2S4 spheres exhibited an impressive capacitance of 1398F g-1 at 1 A g-1 and maintained 1110F g-1 with a large current density of 10 A g-1. The hybrid supercapacitor fabricated by NiCo2S4 and active carbon possesses an energy density of 39.3 Wh kg-1 at a power density of 749.6 W kg-1 and an outstanding cycling stability of 74.4% retention after 5000 cycles. Our work presents a facile method of constructing a hollow structure of binary sulfide materials and also makes progress on highly efficient supercapacitors.
Collapse
Affiliation(s)
- Zeqi Shi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xuetao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China.
| | - Zhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xi Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Ning Gao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Zhanwei Xu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xueying Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xinyue Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| |
Collapse
|
18
|
Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ankit Kumar
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| | - Hem Kanwar Rathore
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Debasish Sarkar
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Ashok Shukla
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| |
Collapse
|
19
|
Xiong S, Weng S, Tang Y, Qian L, Xu Y, Li X, Lin H, Xu Y, Jiao Y, Chen J. Mo-doped Co 3O 4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J Colloid Interface Sci 2021; 602:355-366. [PMID: 34139533 DOI: 10.1016/j.jcis.2021.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Simple preparation, favorable price and environmental protection have been a long-term challenge in the field of electrochemistry. Herein, we studied and prepared a bifunctional Mo-doped Co3O4 ultrathin nanosheets, which has been validated as an effective binder-free electrode material for electrocatalytic water splitting and supercapacitors. The material has a large specific surface area, high electrical conductivity and exposure to more active sites, breaking down the limited performance and range of use of transition metal oxides. Benefiting from intriguing ultrathin property and conductivity, OER and HER process of 0.4Mo-Co3O4 have a small Tafel slope of 83.7 and 98 mV dec-1, respectively. The current density at 10 mA cm-2 show a low overpotential of 315 and 79 mV and significant stability. The water electrolytic device requires a potential of 1.64 V to reach 10 mA cm-2, and the potential change is negligible after 12 h of continuous electrolysis. In addition, the manifest improved electrochemical performance of 0.3Mo-Co3O4 as supercapacitor electrode material shows high areal capacitance 2815 mF cm-2 at 1 mA cm-2, excellent rate performance (85% at 10 mA cm-2) and retains 90% of the initial capacitance by cycling 5000 at a current density of 10 mA cm-2. Moreover, 0.3Mo-Co3O4||0.3Mo-Co3O4 symmetrical supercapacitor has a maximum volumetric energy density of 1.25 mW h cm-3 at a power density of 7.1 mW cm-3 and superior cycle life. The influence of doping on electrochemical performance was studied by changing the content of doped metal ions, which is of great significance for the exploration of supercapacitor and electrocatalytic hydrolysis of bifunctional electrode materials.
Collapse
Affiliation(s)
- Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shuting Weng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Tang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Qian
- Zhejiang Anke Environmental Protection Technology Co., Ltd, China
| | - Yanqiu Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Bao L, Bao Q, Zhang H, Yuan Y. Feasible Tuning of Surface OVs on (001) TiO 2 for Superior Photocatalytic Nitrogen Fixation Activity. Chemphyschem 2021; 22:2168-2171. [PMID: 34406686 DOI: 10.1002/cphc.202100418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Indexed: 12/22/2022]
Abstract
A feasible tuning method for oxygen vacancies was realized by annealing under 3 atm H2 with (001)-exposed TiO2 nanosheets. The colored TiO2 sample exhibits an excellent N2 photo-fixation rate owing to the abundant oxygen vacancies (OVs) thus demonstrating that annealing with high pressure H2 is exceedingly efficient for tuning surface OVs.
Collapse
Affiliation(s)
- Liang Bao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hang Zhou, 310018, China
| | - Qinyu Bao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huaiwei Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hang Zhou, 310018, China
| | - Yongjun Yuan
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hang Zhou, 310018, China
| |
Collapse
|
21
|
Wang L, Li X, Xiong S, Lin H, Xu Y, Jiao Y, Chen J. Plant polyphenols induced the synthesis of rich oxygen vacancies Co 3O 4/Co@N-doped carbon hollow nanomaterials for electrochemical energy storage and conversion. J Colloid Interface Sci 2021; 600:58-71. [PMID: 34004430 DOI: 10.1016/j.jcis.2021.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Reasonable hollow structure design and oxygen vacancy defects control play an important role in the optimization of electrochemical energy storage and electrocatalytic properties. Herein, a plant polyphenol tannic acid was used to etch Co-based zeolitic imidazolate framework (ZIF-67) followed by calcination to prepare a porous Co3O4@Co/NC hollow nanoparticles (Co3O4@Co/NC-HN) with rich oxygen vacancy defects. Owing to the metal-phenolic networks (MPNs), rich oxygen vacancy defects and the synergistic effect between Co3O4 and Co/NC, the box-like Co3O4@Co/NC-HN nanomaterials with large specific surface areas exhibit excellent supercapacitor performance and electrocatalytic activity. As expected, Co3O4@Co/NC-HN shows high specific capacity (273.9 mAh g-1 at 1 A g-1) and remarkable rate performance. Moreover, the assembled Hybrid supercapacitor (HSC, Co3O4@Co/NC-HN//Active carbon) device obtained a maximum energy density of 57.8 Wh kg-1 (800 W kg-1) and exhibited superior cycle stability of 92.6% after 4000 cycles. Notably, as an electrocatalyst, the nanocomposites exhibit small overpotential and Tafel slope. These results strongly demonstrate that both unique hollow structure and abundant oxygen vacancies designed from plant polyphenols provide superiorities for the synthesis of efficient and green multifunctional electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Lingdan Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
22
|
Song J, Li W, Song K, Qin C, Chen X, Sui Y, Zhao Q, Ye Y. Synergistic effect of defects and porous structure in CoCCHH-CoSe heterogeneous-tube @PEDOT:PSS foam towards elastic supercapacitor with enhanced pseudocapacitances. J Colloid Interface Sci 2021; 602:251-260. [PMID: 34126502 DOI: 10.1016/j.jcis.2021.05.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
It is still challenging to construct stable 3D energy storage materials at the nanoscale by precise pore structure control and reasonable surface modification. Herein, a novel interwoven porous Co(CO3)0.35Cl0.20(OH)1.10 (CoCCHH)-CoSe heterogeneous-tube @PEDOT:PSS 3D foam with abundant active sites is presented as supercapacitor electrodes. The electrochemical results indicated that the pore structure provides ample space for redox reaction, and increases the number of ion transport channels. Besides, rational surface modification brings about sufficient active sites for redox reaction. The stable, porous PEDOT:PSS foam with a 3D elastic frame exhibited excellent electrical conductivity. Thus, the CoCCHH-CoSe@PEDOT:PSS foam possessed excellent specific capacitance and energy density, due to the synergistic effect of the unique 3D structure and surface defects. The home-made supercapacitor with CoCCHH-CoSe@PEDOT:PSS foam as cathode materials showed high specific capacitance (440.6F g-1 at 1 A g-1) and excellent energy density (137.7 Wh kg-1). This work provides a valuable strategy to develop potential materials for electrochemical energy storage.
Collapse
Affiliation(s)
- Jia Song
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Kun Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, PR China.
| | - Chuanli Qin
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Xiaoshuang Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, PR China
| | - Yan Sui
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Qi Zhao
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Yuncheng Ye
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| |
Collapse
|