1
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Ye X, Zhou J, Zhang C, Wang Y. Controlled biomolecules separation by CO2-responsive block copolymer membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Liu D, Li K, Li M, Wang Z, Shan M, Zhang Y. Moderately Crystalline Azine-Linked Covalent Organic Framework Membrane for Ultrafast Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37775-37784. [PMID: 34319063 DOI: 10.1021/acsami.1c06891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks are potential candidates for the preparation of advanced molecular separation membranes due to their porous structure, uniform aperture, and chemical stability. However, the fabrication of continuous COF membranes in a facile and mild manner remains a challenge. Herein, a continuous, defect-free, and flexible azine-linked ACOF-1 membrane was prepared on a hydrolyzed polyacrylonitrile (HPAN) substrate via in situ interfacial polymerization (IP). A moderately crystalline COF ultrathin selective layer enabled ultrafast molecular sieving. The effect of synthesis parameters including precursor concentration, catalyst dosage, and reaction duration on the dye separation performance was investigated. The optimized membrane displayed an ultrahigh water permeance of 142 L m-2 h-1 bar-1 together with favorable rejection (e.g., 99.2% for Congo red and 96.3% for methyl blue). The water permeance is 5-12 times higher than that of reported membranes with similar rejections. In addition, ACOF-1 membranes demonstrate outstanding long-term stability together with organic solvent and extreme pH resistance. Meanwhile, the membrane is suitable for removing dyes from salt solution products owing to their nonselective permeation for hydrated salt ions (<10.6%). The superior performance and the excellent chemical stability render the ACOF-1 membrane a satisfactory system for water purification.
Collapse
Affiliation(s)
- Decheng Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kai Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Min Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meixia Shan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|