1
|
Yu Z, Abidin SZ, Toyong NMP, Zhao X. Rational design of N-doped C-encapsulated flower-like nickel-based heterostructured microsphere anodes for high-capacity and stable lithium storage. Dalton Trans 2024; 53:1497-1505. [PMID: 38131421 DOI: 10.1039/d3dt02692b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Designing a unique morphology and nanoarchitecture with a heterostructure is regarded as an efficient strategy to achieve lithium-ion batteries (LIBs) with high capacity and cycle life. Herein, N-doped C-encapsulated flower-like NiS/Ni3(BO3)2 heterostructures (NiS/Ni3(BO3)2/NC) with a core-shell morphology are successfully synthesized by a facile general method to improve the rate performance and prolong the cycle life of LIBs. The coated NC layer and core-shell structure with elasticity can relieve the volume expansion during the lithiation/delithiation process to strengthen the stability of the structure. Moreover, the NC layer and NiS/Ni3(BO3)2/NC heterostructure can enhance the electronic conductivity of the electrode and guarantee fast and unimpeded electron transfer channels, thereby improving the electrochemical reaction kinetics. Owing to the synergy of heterostructures and core-shell layer, the as-synthesized NiS/Ni3(BO3)2/NC anode acquires a specific charge capacity of 549 mA h g-1 at 0.2 A g-1 after 100 cycles; meanwhile, a reversible capacity of 322 mA h g-1 can be maintained even at 1 A g-1 after 500 cycles. This study develops a universal interface manipulation strategy for the synthesis of M3B2O6-based or/and other advanced transition metal compound anode materials for the practical applications of LIBs.
Collapse
Affiliation(s)
- Zhicheng Yu
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Shahriman Zainal Abidin
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Natrina Mariane P Toyong
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Xiaojun Zhao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.
| |
Collapse
|
2
|
Cheng W, Liu J, Hu J, Peng W, Niu G, Li J, Cheng Y, Feng X, Fang L, Wang MS, Redfern SAT, Tang M, Wang G, Gou H. Pressure-Stabilized High-Entropy (FeCoNiCuRu)S 2 Sulfide Anode toward Simultaneously Fast and Durable Lithium/Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301915. [PMID: 37189236 DOI: 10.1002/smll.202301915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.
Collapse
Affiliation(s)
- Wenbo Cheng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jie Liu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jun Hu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Wenfeng Peng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Guoliang Niu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Junkai Li
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Yong Cheng
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaolei Feng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leiming Fang
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Simon A T Redfern
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Gongkai Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Huiyang Gou
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| |
Collapse
|
3
|
Zhao C, Zhang L, Jing S, Kong S, Zhang X, Lan X, Feng Y, Liu C, Tian K, Gong W, Li Q. In Situ Construction of Heterostructured Co 3O 4/CoP Nanoflake Arrays on Carbon Cloth as Binder-Free Anode for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23217-23225. [PMID: 37146292 DOI: 10.1021/acsami.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lingsheng Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Jing
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Kong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaojie Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Lan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongbao Feng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenglong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Konghu Tian
- Analytical and Testing Center, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Qiulong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Guan J, Zhang J, Wang X, Zhang Z, Wang F. Synthesis of L1 0 -Iron Triad (Fe, Co, Ni)/Pt Intermetallic Electrocatalysts via a Phosphide-Induced Structural Phase Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207995. [PMID: 36417324 DOI: 10.1002/adma.202207995] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Structurally ordered L10 -iron triad (Fe, Co, Ni)/Pt with a M(iron triad)/Pt ratio ≈1:1 has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis and fuel cell technologies by virtue of the high performance derived from their strong surface strain. However, the synthesis of intermetallic L10 -M(iron triad)Pt generally requires the accurate content control of the multicomponent and the sufficient thermal energy to overcome the kinetic barrier for atom diffusion. This work reports a synthesis of sub ≈5 nm L10 -intermetallic nanoparticles using phosphide intermediate-induced structural phase transition. Taking the L10 -CoPt intermetallic, for example, the formation of the L10 structure depends on the Co2 P intermediates can provide abundant P vacancies to accelerate the Pt diffusion into the orthorhombic Co-rich skeletons, instead of the traditional route of intermetallic from solid solution. L10 -CoPt prepared by this method has a high degree of ordering and shows the broad adaptability of various Pt-based electrocatalysts with different loading and states to improve their electrocatalytic performance. Additionally, the other L10 -M(iron triad)Pt intermetallics, i.e., L10 -NiPt and L10 -FePt, are also prepared through this phosphide-induced phase transition. The findings provide a promising strategy for designing other intermetallic materials alloy materials using a structural phase transition induced by a second phase.
Collapse
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianqi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinliang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Wu M, Wang J, Liu Z, Liu X, Duan J, Yang T, Lan J, Tan Y, Wang C, Chen M, Ji K. Engineering CoP Alloy Foil to a Well-Designed Integrated Electrode Toward High-Performance Electrochemical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209924. [PMID: 36444846 DOI: 10.1002/adma.202209924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Nanostructured integrated electrodes with binder-free design show great potential to solve the ever-growing problems faced by currently commercial lithium-ion batteries such as insufficient power and energy densities. However, there are still many challenging problems limiting practical application of this emerging technology, in particular complex manufacturing process, high fabrication cost, and low loading mass of active material. Different from existing fabrication strategies, here using a CoP alloy foil as a precursor a simple neutral salt solution-mediated electrochemical dealloying method to well address the above issues is demonstrated. The resultant freestanding mesoporous np-Co(OH)x /Co2 P product possesses not only active compositions of high specific capacity and large electrode packing density (>3.0 g cm-3 ) to meet practical capacity requirements, high-conductivity and well-developed nanoporous framework to achieve simultaneously fast ion and electron transfer, but also interconnected ligaments and suitable free space to ensure strong structural stability. Its comprehensively excellent electrochemical energy storage (EES) performances in both lithium/sodium-ion batteries and lithium-ion capacitors can further illustrate the effectiveness of the integrated electrode preparation strategy, such as remarkable reversible specific capacities/capacitances, dominated pseudo-capacitive EES mechanism, and ultra-long cycling life. This study provides new insights into preparation and design of high-performance integrated electrodes for practical applications.
Collapse
Affiliation(s)
- Mengqian Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhaozhao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xinyu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Jingying Duan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ting Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiao Lan
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yongwen Tan
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Chengyang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
6
|
Yang Y, Xia J, Guan X, Wei Z, Yu J, Zhang S, Xing Y, Yang P. In Situ Growth of CoP Nanosheet Arrays on Carbon Cloth as Binder-Free Electrode for High-Performance Flexible Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204970. [PMID: 36323589 DOI: 10.1002/smll.202204970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cobalt phosphide (CoP) is considered as one of the most promising candidates for anode in lithium-ion batteries (LIBs) owing to its low-cost, abundant availability, and high theoretical capacity. However, problems of low conductivity, heavy aggregation, and volume change of CoP, hinder its practical applicability. In this study, a binder-free electrode is successfully prepared by growing CoP nanosheets arrays directly on a carbon cloth (CC) via a facile one-step electrodeposition followed by an in situ phosphorization strategy. The CoP@CC anode exhibits good interfacial bonding between the CoP and CC, which can improve the conductivity of the integrated electrode. More importantly, the 3D network structure composed of CoP nanosheets and CC provides sufficient space to alleviate the volume expansion of CoP and shorten the electron/ion transport paths. Moreover, the support of CC effectively prevents the agglomeration of CoP. Based on these advantages, when CoP@CC is paired with the NCM523 cathode, the full cell delivers a high discharge capacity 919.6 mAh g-1 (2.1 mAh cm-2 ) after 200 cycles at 0.5 A g-1 . The feasibility and safety of producing pouch cells are also explored, which show good flexibility and safety despite rigorous strikes (mechanical damage and severe deformations), implying a great potential for practical applications.
Collapse
Affiliation(s)
- Yang Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jun Xia
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xianggang Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Ziwei Wei
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jiayu Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yalan Xing
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Puheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
7
|
Porous CoxP nanosheets decorated Mn0.35Cd0.65S nanoparticles for highly enhanced noble-metal-free photocatalytic H2 generation. J Colloid Interface Sci 2022; 625:859-870. [DOI: 10.1016/j.jcis.2022.06.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
|
8
|
Lin Z, Tan X, Lin Y, Lin J, Yang W, Huang Z, Ying S, Huang X. Rational construction of yolk-shell CoP/N,P co-doped mesoporous carbon nanowires as anodes for ultralong cycle life sodium-ion batteries. RSC Adv 2022; 12:28341-28348. [PMID: 36320523 PMCID: PMC9533733 DOI: 10.1039/d2ra04153g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Owing to the natural abundance and low-cost of sodium, sodium-ion batteries offer advantages for next-generation portable electronic devices and smart grids. However, the development of anode materials with long cycle life and high reversible capacity is still a great challenge. Herein, we report a yolk–shell structure composed of N,P co-doped carbon as the shell and CoP nanowires as the yolk (YS–CoP@NPC) for a hierarchically nanoarchitectured anode for improved sodium storage performance. Benefitting from the 1D hollow structure, the YS–CoP@NPC electrode exhibits an excellent cycling stability with a reversibly capacity of 211.5 mA h g−1 at 2 A g−1 after 1000 cycles for sodium storage. In-depth characterization by ex situ X-ray photoelectron spectroscopy and work function analysis revealed that the enhanced sodium storage property of YS–CoP@NPC might be attributed to the stable solid electrolyte interphase film, high electronic conductivity and better Na+ diffusion kinetics. Owing to the natural abundance and low-cost of sodium, sodium-ion batteries offer advantages for next-generation portable electronic devices and smart grids.![]()
Collapse
Affiliation(s)
- Zhiya Lin
- College of Mathematics and Physics, Ningde Normal UniversityNingde 352100China,College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal UniversityFuzhou 350117China
| | - Xueqing Tan
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal UniversityNingde 352100China
| | - Yanping Lin
- College of Mathematics and Physics, Ningde Normal UniversityNingde 352100China
| | - Jianping Lin
- College of Mathematics and Physics, Ningde Normal UniversityNingde 352100China
| | - Wenyu Yang
- College of Mathematics and Physics, Ningde Normal UniversityNingde 352100China
| | - Zhiqiang Huang
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal UniversityNingde 352100China
| | - Shaoming Ying
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal UniversityNingde 352100China
| | - Xiaohui Huang
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal UniversityNingde 352100China
| |
Collapse
|
9
|
Jin R, Xu H, Li W, Zeng X, Li R. Engineering Ag nanoparticles and amorphous MoOx on three dimensional N-doped carbon networks for enhanced lithium storage performance. J Colloid Interface Sci 2022; 628:308-317. [DOI: 10.1016/j.jcis.2022.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
10
|
Xie M, Zhou M, Zhang Y, Du C, Chen J, Wan L. Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2022; 608:79-89. [PMID: 34626998 DOI: 10.1016/j.jcis.2021.09.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Transition metal phosphides hold great promise for high performance battery-type electrode materials due to their superb electrical conductivity and high theoretical capacity. Unfortunately, the electrochemical properties of single metal or bimetallic phosphides are unsatisfactory owing to their low energy density and poor cyclic stability, and one feasible approach is to introduce heteroatoms to form trimetallic phosphides. Here, novel Fe-Co-Ni-P nanosheet arrays are in situ synthesized on a flexible carbon cloth substrate via an electrodeposition method followed by a phosphorization treatment. Due to the presence of abundant redox active sites, large specific surface area with mesoporous channels, desirable electrical conductivity, modified electronic structure, and synergistic effect of Fe, Co, and Ni ions, the as-prepared Fe-Co-Ni-P electrode displays significantly enhanced electrochemical performance when compared to bimetallic phosphides Fe-Co-P and Fe-Ni-P. Remarkably, the Fe-Co-Ni-P electrode exhibits a large specific capacity of 593.0 C g-1 at 1 A g-1, exceptional rate performance (80.3% capacity retention at 20 A g-1), and good cycling stability (84.2% capacity retention after 5000cycles). Besides, an asymmetric supercapacitor device with Fe-Co-Ni-P electrode as a positive electrode and a hierarchical porous carbon as a negative electrode shows a high energy density of 57.1 Wh kg-1 at a power density of 768.5 W kg-1 as well as excellent cyclability with 88.4% of initial capacity after 10,000cycles. This work manifests that the construction of trimetallic phosphides is an effective strategy to solve the shortcomings of single or bimetallic phosphides for high-performance supercapacitors.
Collapse
Affiliation(s)
- Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Meng Zhou
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
11
|
Wang L, Zhao Y, Huang Z, Rao X, Guo M, Isimjan TT, Yang X. Interfacial regulation of electron enhanced Co2P‐CuP2 sheet‐like heterostructure as a robust bifunctional electrocatalyst for overall water splitting and Zn‐H2O cell. ChemCatChem 2022. [DOI: 10.1002/cctc.202101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lixia Wang
- Guangxi Normal University Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Ph 541004 Guiling CHINA
| | - Yunru Zhao
- Guangxi Normal University Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Ph 541004 Guiling CHINA
| | - Zhiyang Huang
- Guangxi Normal University Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Ph 541004 Guiling CHINA
| | - Xianfa Rao
- JiangXi University of Science and Technology School of Resources and Environmental Engineering CHINA
| | - Man Guo
- Guangxi Normal University Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences 541004 Guiling CHINA
| | - Tayirjan Taylor Isimjan
- KAUST: King Abdullah University of Science and Technology Saudi Arabia Basic Industries Corporation at King Abdullah University of Science and Technology Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of 23955-6900 Thuwal SAUDI ARABIA
| | - Xiulin Yang
- Guangxi Normal University College of Chemistry and Pharmacy No. 15, Yucai Road, Qixing District 541004 Guilin CHINA
| |
Collapse
|
12
|
Li FF, Gao JF, He ZH, Kong LB. Realizing high-performance and low-cost lithium-ion capacitor by regulating kinetic matching between ternary nickel cobalt phosphate microspheres anode with ultralong-life and super-rate performance and watermelon peel biomass-derived carbon cathode. J Colloid Interface Sci 2021; 598:283-301. [PMID: 33901853 DOI: 10.1016/j.jcis.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Lithium-ion capacitors (LICs) are emerging as one of the most advanced energy storage devices by combining the virtues of both supercapacitors (SCs) and lithium-ion batteries (LIBs). However, the kinetic and capacity mismatch between anode and cathode is the main obstacle to wide applications of LICs. Therefore, the effective strategy of constructing a high-performance LIC is to improve the rate and cycle performance of the anode and the specific capacity of the cathode. Herein, the nickel cobalt phosphate (NiCoP) microspheres anode is demonstrated with robust structural integrity, high electrical conductivity, and fast kinetic feature. Simultaneously, the watermelon-peel biomass-derived carbon (WPBC) cathode is demonstrated a sustainable synthesis strategy with high specific capacity. As expected, the NiCoP exhibits high specific capacities (567 mAh g-1 at 0.1 A g-1), superior rate performance (300 mAh g-1 at 1A g-1), and excellent cycle stability (58 mAh g-1 at 5 A g-1 after 15,000 cycles). The WPBC possesses a high specific surface area (SSA) of 3303.6 m2 g-1 and a high specific capacity of 226 mAh g-1 at 0.1 A g-1. Encouragingly, the NiCoP//WPBC-6 LIC device can deliver high energy density (ED) of 127.4 ± 3.3 and 67 ± 3.8Wh kg-1 at power density (PD) of 190 and 18240 W kg-1 (76.4% capacity retention after 7000 cycles), respectively.
Collapse
Affiliation(s)
- Feng-Feng Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jian-Fei Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zheng-Hua He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| |
Collapse
|