1
|
Ma C, Cheng Z, Zhang M, Huang Y, Huang W, Wang L, Zhao B, Zhang Z. High performance forward osmosis membrane with ultrathin hydrophobic nanofibrous interlayer. CHEMOSPHERE 2023; 338:139556. [PMID: 37467861 DOI: 10.1016/j.chemosphere.2023.139556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The novel thin film composite (TFC) forward osmosis (FO) membrane with electrospinning nanofibers as support layer can alleviate internal concentration polarization (ICP). While the macropores of the nanofiber support layer cause defects in the polyamide (PA) layer. Therefore, hydrophobic polyvinylidene fluoride (PVDF) fine nanofibers were used as an interlayer to modulate the process of interfacial polymerization (IP) in this study. The results showed that the introduction of the interlayer improved the hydrophobicity of the support layer for achieving uniform, thin and defect-free selective polyamide (PA) layer. The water flux of TFC-PVDF was 58.26 LMH in the FO mode of 2 M NaCl, which was two times higher than that of the unmodified FO membrane. Lower reverse salt flux (4.91 gMH) and structural parameter (179.43 μm) alleviated the ICP. In addition, TFC-PVDF membrane showed good anti-fouling performance for SA (flux recovery ratio of 93.97%) due to high hydrophilicity, low zeta potential and low roughness. This study provides an easy and promising method to prepare defect-free PA selective layer on the macropores nanofiber support layer. The novel FO membrane shows high desalination performance and anti-fouling properties.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Zhaoyang Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Meng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yukun Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Weili Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhaohui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Gao Z, Li B, Li Z, Yu T, Wang S, Fang Q, Qiu S, Xue M. Free-Standing Metal-Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19241-19249. [PMID: 37029737 DOI: 10.1021/acsami.3c02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.
Collapse
Affiliation(s)
- Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
3
|
Zhao X, Fan Y, Wang C, Su Z, Huo H, Yang X, Cai Y, Geng Z, Wang C. Multi-functional Ag@NH2-UiO-66/PAES-COOH self-supporting symmetric hybrid membrane for forward osmosis separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|