1
|
Balan B, Xavier MM, Mathew S. MoS 2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS OMEGA 2023; 8:25649-25673. [PMID: 37521597 PMCID: PMC10373465 DOI: 10.1021/acsomega.3c02084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Photocatalysis is a facile and sustainable approach for energy conversion and environmental remediation by generating solar fuels from water splitting. Due to their two-dimensional (2D) layered structure and excellent physicochemical properties, molybdenum disulfide (MoS2) has been effectively utilized in photocatalytic H2 evolution reaction (HER) and CO2 reduction. The photocatalytic efficiency of MoS2 greatly depends on the active edge sites present in their layered structure. Modifications like reducing the layer numbers, creating defective structures, and adopting different morphologies produce more unsaturated S atoms as active edge sites. Hence, MoS2 acts as a cocatalyst in nanocomposites/heterojunctions to facilitate the photogenerated electron transfer. This review highlights the role of MoS2 as a cocatalyst for nanocomposites in H2 evolution reaction and CO2 reduction. The H2 evolution activity has been described comprehensively as binary (with metal oxide, carbonaceous materials, metal sulfides, and metal-organic frameworks) and ternary composites of MoS2. Photocatalytic CO2 reduction is a more complex and challenging process that demands an efficient light-responsive semiconductor catalyst to tackle the thermodynamic and kinetic factors. Photocatalytic reduction of CO2 using MoS2 is an emerging topic and would be a cost-effective substitute for noble catalysts. Herein, we also exclusively envisioned the possibility of layered MoS2 and its composites in this area. This review is expected to furnish an understanding of the diverse roles of MoS2 in solar fuel generation, thus endorsing an interest in utilizing this unique layered structure to create nanostructures for future energy applications.
Collapse
Affiliation(s)
- Bhagyalakshmi Balan
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Marilyn Mary Xavier
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Suresh Mathew
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| |
Collapse
|
2
|
Liu L, Wu L, Yang H, Ge H, Xie J, Cao K, Cheng G, Chen S. Conductivity and Stability Enhancement of PEDOT:PSS Electrodes via Facile Doping of Sodium 3-Methylsalicylate for Highly Efficient Flexible Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1615-1625. [PMID: 34968042 DOI: 10.1021/acsami.1c21591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most prospering transparent conductive materials for flexible optoelectronic devices, which arises from its nonpareil features of low-cost solution processability, tunable conductivity, high transparency, and superior mechanical flexibility. However, acidity and hygroscopicity of PSS chains cause a decrease in conductivity, substrate corrosion, and device degradation. This work proposes a facile and effective direct doping strategy of sodium 3-methylsalicylate to enhance the conductivity, alleviate the acidity, and improve the stability of PEDOT:PSS electrodes, simultaneously. Owing to the formation of weaker acid and PSS-Na, PSS chains are disentangled from the coiled PEDOT:PSS complexes, leading to the phase separation of PEDOT:PSS and the formation of fibril-like PEDOT domains. Eventually, the sodium 3-methylsalicylate-modified PEDOT:PSS electrode is employed in flexible organic light-emitting diodes with an outstanding external quantum efficiency of up to 25%. The improved performance is attributed to the more matched work function and the as-formed interfacial dipole. The sodium 3-methylsalicylate-modified PEDOT:PSS electrode with high conductivity and transmittance, superior stability in the air as well as good mechanical flexibility has the potential to be the most promising transparent conductive material for flexible optoelectronic device applications.
Collapse
Affiliation(s)
- Lihui Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lei Wu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hao Yang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Honggang Ge
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Juxuan Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Gang Cheng
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok 999077, Hong Kong SAR, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Shufen Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
3
|
Shen W, Zhang J, Dong R, Chen Y, Yang L, Chen S, Su Z, Dai Y, Cao K, Liu L, Chen S, Huang W. Stable and Efficient Red Perovskite Light-Emitting Diodes Based on Ca 2+-Doped CsPbI 3 Nanocrystals. Research (Wash D C) 2021; 2021:9829374. [PMID: 34957403 PMCID: PMC8672203 DOI: 10.34133/2021/9829374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022] Open
Abstract
α-CsPbI3 nanocrystals (NCs) with poor stability prevent their wide applications in optoelectronic fields. Ca2+ (1.00 Å) as a new B-site doping ion can successfully boost CsPbI3 NC performance with both improved phase stability and optoelectronic properties. With a Ca2+/Pb2+ ratio of 0.40%, both phase and photoluminescence (PL) stability could be greatly enhanced. Facilitated by increased tolerance factor, the cubic phase of its solid film could be maintained after 58 days in ambient condition or 4 h accelerated aging process at 120°C. The PL stability of its solution could be preserved to 83% after 147 days in ambient condition. Even using UV light to accelerate aging, the T50 of PL could boost 1.8-folds as compared to CsPbI3 NCs. Because Ca2+ doping can dramatically decrease defect densities of films and reduce hole injection barriers, the red light-emitting diodes (LEDs) exhibited about triple enhancement for maximum the external quantum efficiency (EQE) up to 7.8% and 2.2 times enhancement for half-lifetime of LED up to 85 min. We believe it is promising to further explore high-quality CsPbI3 NC LEDs via a Ca2+-doping strategy.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianbin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ruimin Dong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Liu Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shuo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhan Su
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yujun Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|