1
|
Xi R, Sun X, Jiang X, Jiang L. Preparation of Long-Range Ordered 1D Nanowire Arrays on PVP-Modified Hydrophobic Highly Adhesive Templates Using Conical Fiber Arrays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20452-20460. [PMID: 40112164 DOI: 10.1021/acsami.5c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Suspended nanoscale one-dimensional (1D) arrays have attracted substantial interest due to their promising applications in nanodevice fabrication. In this study, we propose a novel strategy for fabricating precisely positioned, long-range ordered nanowire arrays by controlling the directional liquid transport of conical fiber arrays (CFAs) on asymmetrically modified silicon templates patterned with periodic spindle-shaped micropillars. The intrinsic properties of CFAs and the tailored wettability of silicon templates play critical roles in nanowire fabrication. CFAs generates quasi-unidirectional surface tension (Fγ), facilitating precise control over the retraction of liquid films and ensuring strict nanowire alignment in the dewetting direction. Meanwhile, high-adhesion hydrophobic surfaces effectively enhance the pinning behavior of the three-phase contact line during the retraction process, thereby improving the liquid bridge stability. It is noteworthy that the method developed for preparing high-yield arrays of ultralong nanowires exhibits remarkable universality. This approach can be widely applied to the synthesis of suspended nanowires using diverse polymers such as polystyrene sulfonic acid, poly(vinyl alcohol), polyvinylpyrrolidone, polyethylene glycol, and sodium alginate as solutes, achieving a robust formation rate exceeding 80% for nanowires that surpass 16 μm in length. These findings contribute valuable knowledge for the scalable production of suspended 1D nanostructures, furthering advancements in nanoscale device development.
Collapse
Affiliation(s)
- Rubing Xi
- School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaohan Sun
- School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiangyu Jiang
- School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lei Jiang
- School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
2
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Yang X, Zhang K, Zhang Y, Liu H, Liu S, Fu D, Song J, Ma X, Li N, Liu SH. Osmapentalenofurans Constructed by Reacting Os≡C1 of Osmapentalyne with Phenols. Chemistry 2024; 30:e202402711. [PMID: 39177286 DOI: 10.1002/chem.202402711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Over the past decade, significant research efforts have focused on osmapentalyne, characterized by the more reactive Os≡C7 (Carbon atoms numbered in a clockwise direction on the osmapentalyne skeleton), across areas encompassing electrophilic, nucleophilic, and addition reactions. Nevertheless, the reactivity of osmapentalyne featuring Os≡C1 remains ripe for further exploration. In this investigation, we effectively synthesized a lineage of osmapentalenofurans through the nucleophilic reaction of osmapentalyne incorporating Os≡C1 with phenols. These resulting complexes demonstrate near-infrared luminescence traits in both solid and liquid states. Particularly noteworthy is the osmapentalenofuran derived from tetraphenylethane (TPE) unit, which showcases remarkable aggregation-induced emission (AIE) property in the aggregated state. These osmapentalenofurans are also able to further extend their range of reactions, including reactions with base and isonitrile. This study not only broadens the scope of applications for metal aromatics but also furnishes valuable insights into the realm of specialized functional materials.
Collapse
Affiliation(s)
- Xiaofei Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kunming Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuteng Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shanting Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Debin Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jie Song
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xuexue Ma
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Li
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
4
|
Li W, Qiao M, Chen Z, Jin X, Su Y, Chen X, Guo L, Zhang Z, Su J. H-bond interaction traps vibrating fluorophore in polyurethane matrix for bifunctional environmental monitoring. Chem Commun (Camb) 2023. [PMID: 37254604 DOI: 10.1039/d3cc00754e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A simple strategy is presented for the bifunctional detection of environmental organic vapor and temperature by utilizing H-bond interactions to trap a butterfly-vibration-based fluorophore (DPAC-OH) in a polyurethane (PU) matrix. The method opens up a new path for large-scale environmental inspections and the design of dual-response luminescent materials.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Mengyuan Qiao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Yonghao Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xuanying Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Zhou M, Chen X, Shen XA, Lin X, Chen P, Qiao Z, Li X, Xiong Y, Huang X. Highly Sensitive Immunochromatographic Detection of Zearalenone Based on Ultrabright Red-Emitted Aggregation-Induced Luminescence Nanoprobes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4408-4416. [PMID: 36866978 DOI: 10.1021/acs.jafc.3c00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Highly luminescent nanospheres have been demonstrated in enhancing the sensitivity of lateral flow immunoassay (LFIA) due to their loading numerous luminescent dyes. However, the photoluminescence intensities of existing luminescent nanospheres are limited due to the aggregation-caused quenching effect. Herein, highly luminescent aggregation-induced emission luminogens embedded nanospheres (AIENPs) with red emission were introduced as signal amplification probes of LFIA for quantitative detection of zearalenone (ZEN). Optical properties of red-emitted AIENPs were compared with time-resolved dye-embedded nanoparticles (TRNPs). Results showed that red-emitted AIENPs have stronger photoluminescence intensity on the nitrocellulose membrane and superior environmental tolerance. Additionally, we benchmarked the performance of AIENP-LFIA against TRNP-LFIA using the same set of antibodies, materials, and strip readers. Results showed that AIENP-LFIA exhibits good dynamic linearity with the ZEN concentration from 0.195 to 6.25 ng/mL, with half competitive inhibitory concentration (IC50) and detection of limit (LOD) at 0.78 and 0.11 ng/mL, respectively. The IC50 and LOD are 2.07- and 2.36-fold lower than those of TRNP-LFIA. Encouragingly, the precision, accuracy, specificity, practicality, and reliability of this AIENP-LFIA for ZEN quantitation were further characterized. The results verified that the AIENP-LFIA has good practicability for the rapid, sensitive, specific, and accurate quantitative detection of ZEN in corn samples.
Collapse
Affiliation(s)
- Mengjun Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi General Institute of Testing and Certification Instituto for Food Control, Nanchang 330052, P. R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Xuan-Ang Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Xiangkai Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Ping Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Zhaohui Qiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, P. R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
6
|
Chen H, Wu J, Zhou M, Zhou H, Li X, Chen X, Zou H, Guo Q, Xiong Y. Ultrabright red-emitted aggregation-induced luminescence microspheres-based lateral flow immunoassay for furosemide detection in slimming products. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Fei Yang X, Zhang MX, Bin Fu D, Wang Y, Yin J, Hua Liu S. Pentacyclic and Hexacyclic Osmaarynes and Their Derivatives. Chemistry 2022; 28:e202202334. [PMID: 36198664 DOI: 10.1002/chem.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/07/2022]
Abstract
Although osmabenzyne, osmanaphthalyne, osmaphenanthryne, and osmaanthracyne have been previously reported, the synthesis of polycyclic osmaarynes is still a challenge. Herein, we report the successful synthesis of the first pentacyclic osmaarynes (pyreno[b]osmabenzynes 1 a and 2 a) and hexacyclic osmaaryne (peryleno[b]osmabenzyne 3 a). Nucleophilic reaction of osmaarynes was used to obtain the corresponding pyreno[b]osmium complexes (1 and 2) and peryleno[b] osmium complex (3), which exhibited near-infrared luminescence and aggregation-induced emission (AIE) properties. Complexes 2 and 3 are resistant to photodegradation, and complex 2 has better photothermal conversion properties than 3.
Collapse
Affiliation(s)
- Xiao Fei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
- Hubei Key Laboratory of Purification and Application of, Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, 430205, Wuhan, P. R. China
| | - De Bin Fu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Yang Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
8
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
9
|
Wang P, Liu X, Liu H, He X, Zhang D, Chen J, Li Y, Feng W, Jia K, Lin J, Li K, Yang X. Combining aggregation-induced emission and instinct high-performance of polyarylene ether nitriles via end-capping with tetraphenylethene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|