1
|
Park JH, Pattipaka S, Hwang GT, Park M, Woo YM, Kim YB, Lee HE, Jeong CK, Zhang T, Min Y, Park KI, Lee KJ, Ryu J. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. NANO-MICRO LETTERS 2024; 16:276. [PMID: 39186184 PMCID: PMC11347555 DOI: 10.1007/s40820-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
This review provides a comprehensive overview of the progress in light-material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu Mi Woo
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
| | - Yuho Min
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Kwi-Il Park
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jungho Ryu
- School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
2
|
Hu X, Zuo D, Cheng S, Chen S, Liu Y, Bao W, Deng S, Harris SJ, Wan J. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem Soc Rev 2023; 52:1103-1128. [PMID: 36651148 DOI: 10.1039/d2cs00322h] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Energy and environmental issues have attracted increasing attention globally, where sustainability and low-carbon emissions are seriously considered and widely accepted by government officials. In response to this situation, the development of renewable energy and environmental technologies is urgently needed to complement the usage of traditional fossil fuels. While a big part of advancement in these technologies relies on materials innovations, new materials discovery is limited by sluggish conventional materials synthesis methods, greatly hindering the advancement of related technologies. To address this issue, this review introduces and comprehensively summarizes emerging ultrafast materials synthesis methods that could synthesize materials in times as short as nanoseconds, significantly improving research efficiency. We discuss the unique advantages of these methods, followed by how they benefit individual applications for renewable energy and the environment. We also highlight the scalability of ultrafast manufacturing towards their potential industrial utilization. Finally, we provide our perspectives on challenges and opportunities for the future development of ultrafast synthesis and manufacturing technologies. We anticipate that fertile opportunities exist not only for energy and the environment but also for many other applications.
Collapse
Affiliation(s)
- Xueshan Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shaoru Cheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sihui Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Sili Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Stephen J Harris
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|