1
|
Yahyazadeh Shourabi A, Iacona M, Aubin-Tam ME. Microfluidic system for efficient molecular delivery to artificial cell membranes. LAB ON A CHIP 2025; 25:1842-1853. [PMID: 40047333 DOI: 10.1039/d4lc00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The cell membrane is a crucial biological interface to consider in biomedical research, as a significant proportion of drugs interacts with this barrier. While understanding membrane-drug interactions is important, existing in vitro platforms for drug screening predominantly focus on interactions with whole cells or tissues. This preference is partly due to the instability of membrane-based systems and the technical challenges associated with buffer replacement around lipid membranes formed on microfluidic chips. Here, we introduce a novel microfluidic design capable of forming stable freestanding lipid bilayers with efficient replacement of the media in their local environment for molecular delivery to the membrane. With the use of bubble traps and resistance channels, we achieved sufficient hydrodynamic control to maintain membrane stability during the membrane formation and the molecular delivery phases. As a proof of concept, we successfully formed 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers on the chip and delivered the antibiotic azithromycin at low (5 μM) and high (250 μM) doses. Using optical tweezers, we characterized how azithromycin influenced the membrane elastic properties, including tension and bending rigidity. This microfluidic device is a versatile tool that can deliver various buffers, molecules or nano-/microparticles to freestanding membranes, and study the resulting impact on the membranes' properties.
Collapse
Affiliation(s)
- Arash Yahyazadeh Shourabi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| | - Martina Iacona
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
2
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Wei S, Tang Q, Hu X, Ouyang W, Shao H, Li J, Yan H, Chen Y, Liu L. Rapid, Ultrasensitive, and Visual Detection of Pathogens Based on Cation Dye-Triggered Gold Nanoparticle Electrokinetic Agglutination Analysis. ACS Sens 2024; 9:325-336. [PMID: 38214583 DOI: 10.1021/acssensors.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rapid prescribing of the right antibiotic is the key to treat infectious diseases and decelerate the challenge of bacterial antibiotic resistance. Herein, by targeting the 16S rRNA of bacteria, we developed a cation dye-triggered electrokinetic gold nanoparticle (AuNP) agglutination (CD-TEAA) method, which is rapid, visual, ultrasensitive, culture-independent, and low in cost. The limit of detection (LOD) is as low as 1 CFU mL-1 Escherichia coli. The infection identifications of aseptic fluid samples (n = 11) and urine samples with a clinically suspected urinary tract infection (UTI, n = 78) were accomplished within 50 and 30 min for each sample, respectively. The antimicrobial susceptibility testing (AST) of UTI urine samples was achieved within 2.5 h. In ROC analysis of urine, the sensitivity and specificity were 100 and 96% for infection identification, and 100 and 98% for AST, respectively. Moreover, the overall cost of materials for each test is about US$0.69. Therefore, the CD-TEAA method is a superior approach to existing, time-consuming, and expensive methods, especially in less developed areas.
Collapse
Affiliation(s)
- Siqi Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Wu W, Cai G, Liu Y, Suo Y, Zhang B, Jin W, Yu Y, Mu Y. Direct single-cell antimicrobial susceptibility testing of Escherichia coli in urine using a ready-to-use 3D microwell array chip. LAB ON A CHIP 2023; 23:2399-2410. [PMID: 36806255 DOI: 10.1039/d2lc01095j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Empirical antibiotic therapies are prescribed for treating uncomplicated urinary tract infections (UTIs) due to the long turnaround time of conventional antimicrobial susceptibility testing (AST), leading to the prevalence of multi-drug resistant pathogens. We present a ready-to-use 3D microwell array chip to directly conduct comprehensive AST of pathogenic agents in urine at the single-cell level. The developed device features a highly integrated 3D microwell array, offering a dynamic range from 102 to 107 CFU mL-1, and a capillary valve-based flow distributor for flow equidistribution in dispensing channels and uniform sample distribution. The chip with pre-loaded reagents and negative pressure inside only requires the user to initiate AST by loading samples (∼3 s) and can work independently. We demonstrate an accessible sample-to-result workflow, including syringe filter-based bacteria separation and rapid single-cell AST on chip, which enables us to bypass the time-consuming bacteria isolation and pre-culture, speeding up the AST in ∼3 h from 2 days of conventional methods. Moreover, the bacterial concentration and AST with minimum inhibitory concentrations can be assessed simultaneously to provide comprehensive information on infections. With further development for multiple antibiotic conditions, the Dsc-AST assay could contribute to timely prescription of targeted drugs for better patient outcomes and mitigation of the threat of drug-resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Wang C, Wang J, Zhang Z, Wang Q, Shang L. DNA-Polyelectrolyte Composite Responsive Microparticles for Versatile Chemotherapeutics Cleaning. RESEARCH (WASHINGTON, D.C.) 2023; 6:0083. [PMID: 36939415 PMCID: PMC10017331 DOI: 10.34133/research.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Drug therapy is among the most widely used methods in disease treatment. However, there remains a trade-off problem between drug dosage and toxicity. Blood purification by adsorption of excessive drugs during clinical treatment could be a solution for enhancing therapeutic efficacy while maintaining normal body function. Here, inspired by the intrinsic action mechanism of chemotherapeutic agents in targeting DNA in the cell nucleus, we present DNA-polyelectrolyte composite responsive microparticles for chemotherapeutics cleaning. The presence of DNA in the microparticles enabled the adsorption of multiple common chemotherapy drugs. Moreover, the microparticles are endowed with a porous structure and a photothermal-responsive ability, both of which contribute to improved adsorption by enhancing the contact of the microparticles with the drug solution. On the basis of that, the microparticles are integrated into a herringbone-structured microfluidic chip. The fluid mixing capacity and the enhanced drug cleaning efficiency of the microfluidic platform are validated on-chip. These results indicate the value of the DNA-polyelectrolyte composite responsive microparticles for drug capture and blood purification. We believe the microparticle-integrated microfluidic platform could provide a solution for settling the dosage-toxicity trade-off problems in chemotherapy.
Collapse
|
6
|
Heuer C, Preuss JA, Buttkewitz M, Scheper T, Segal E, Bahnemann J. A 3D-printed microfluidic gradient generator with integrated photonic silicon sensors for rapid antimicrobial susceptibility testing. LAB ON A CHIP 2022; 22:4950-4961. [PMID: 36412200 DOI: 10.1039/d2lc00640e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With antimicrobial resistance becoming a major threat to healthcare settings around the world, there is a paramount need for rapid point-of-care antimicrobial susceptibility testing (AST) diagnostics. Unfortunately, most currently available clinical AST tools are lengthy, laborious, or are simply inappropriate for point-of-care testing. Herein, we design a 3D-printed microfluidic gradient generator that automatically produces two-fold dilution series of clinically relevant antimicrobials. We first establish the compatibility of these generators for classical AST (i.e., broth microdilution) and then extend their application to include a complete on-chip label-free and phenotypic AST. This is accomplished by the integration of photonic silicon chips, which provide a preferential surface for microbial colonization and allow optical tracking of bacterial behavior and growth at a solid-liquid interface in real-time by phase shift reflectometric interference spectroscopic measurements (PRISM). Using Escherichia coli and ciprofloxacin as a model pathogen-drug combination, we successfully determine the minimum inhibitory concentration within less than 90 minutes. This gradient generator-based PRISM assay provides an integrated AST device that is viable for convenient point-of-care testing and offers a promising and most importantly, rapid alternative to current clinical practices, which extend to 8-24 h.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 320003 Haifa, Israel.
| | - John-Alexander Preuss
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Marc Buttkewitz
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 320003 Haifa, Israel.
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|