1
|
Yang H, Wei Y, Ju H, Huang X, Li J, Wang W, Peng D, Tu D, Li G. Microstrain-Stimulated Elastico-Mechanoluminescence with Dual-Mode Stress Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401296. [PMID: 38599208 DOI: 10.1002/adma.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Elastico-mechanoluminescence technology has shown significant application prospects in stress sensing, artificial skin, remote interaction, and other research areas. Its progress mainly lies in realizing stress visualization and 2D or even 3D stress-sensing effects using a passive sensing mode. However, the widespread promotion of mechanoluminescence (ML) technology is hindered by issues such as high stress or strain thresholds and a single sensing mode based on luminous intensity. In this study, a highly efficient green-emitting ML with dual-mode stress-sensing characteristics driven by microscale strain is developed using LiTaO3:Tb3+. In addition to single-mode sensing based on the luminous intensity, the self-defined parameter (Q) is also introduced as a dual-mode factor for sensing the stress velocity. Impressively, the fabricated LiTaO3:Tb3+ film is capable of generating discernible ML signals even when supplied with strains as low as 500 µst. This is the current minimum strain value that can drive green-emitting ML. This study offers an ideal photonic platform for exploring the potential applications of rare-earth-doped elastico-ML materials in remote interaction devices, high-precision stress sensors, and single-molecule biological imaging.
Collapse
Affiliation(s)
- Hang Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Yi Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Haonan Ju
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Xinru Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jun Li
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang, 236037, China
| | - Wei Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Tu
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
2
|
Chen H, Meng L, Lu M, Song Z, Wang W, Shao X. Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials. MICROMACHINES 2023; 14:1834. [PMID: 37893271 PMCID: PMC10609536 DOI: 10.3390/mi14101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
The SAW (surface acoustic wave) gyroscopic effect is a key parameter that reflects the sensitivity performance of SAW angular velocity sensors. This study found that adding a layer of non-piezoelectric material with a lower reflection coefficient than that of the upper-layer material below the piezoelectric substrate to form a double-layer structure significantly enhanced the SAW gyroscopic effect, and the smaller the reflection coefficient of the lower-layer material, the stronger the SAW gyroscopic effect, with values being reached that were two to three times those with single-layer substrate structures. This was confirmed using a three-dimensional model, and the experimental results also showed that the thickness of the piezoelectric layer and the type of the lower-layer material also had a significant impact on the SAW gyroscopic effect. This novel discovery will pave the way for the future development of SAW angular velocity sensors.
Collapse
Affiliation(s)
- Hengbiao Chen
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; (H.C.); (L.M.); (M.L.); (Z.S.)
| | - Lili Meng
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; (H.C.); (L.M.); (M.L.); (Z.S.)
| | - Mengjiao Lu
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; (H.C.); (L.M.); (M.L.); (Z.S.)
| | - Ziwen Song
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; (H.C.); (L.M.); (M.L.); (Z.S.)
| | - Wen Wang
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Xiuting Shao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; (H.C.); (L.M.); (M.L.); (Z.S.)
| |
Collapse
|