1
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
2
|
Zheng Y, Lin G, Zhou W, Wei L, Liu J, Shang S, Zhu P. Bioinspired Polydopamine Modification for Interface Compatibility of PDMS-Based Responsive Structurally Colored Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51748-51756. [PMID: 39259831 DOI: 10.1021/acsami.4c11967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the preparation of a magnetic field response (MFR) textile with a fast magnetic field response, brilliant structural coloration, and mechanical robustness is reported. The MFR textile is knitted by incorporating magnetic particles' ethylene glycol (EG) suspension within polydimethylsiloxane (PDMS)-based fibers. A surface modification strategy is designed to prevent EG from seeping out along the PDMS polymer chains. A PDMS fiber is encapsulated in waterborne polyurethane, and a polydopamine joint layer is used. The MFR textile demonstrates magnetic field-triggered structural colors, and the breaking strength and elongation at break of each composite fiber are improved. In addition, multishaped patterns can be printed on the MFR textile with the help of the photo etching technology, which enhances the applications of the new functional textiles.
Collapse
Affiliation(s)
- Yu Zheng
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Guizhen Lin
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Weixian Zhou
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Luyao Wei
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Chen H, Zhang X, Zhou T, Hou A, Liang J, Ma T, Xie K, Gao A. A Tunable Hydrophilic-Hydrophobic, Stimulus Responsive, and Robust Iridescent Structural Color Bionic Film with Chiral Photonic Crystal Nanointerface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311283. [PMID: 38716925 DOI: 10.1002/smll.202311283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Indexed: 10/01/2024]
Abstract
Bio-inspired in nature, using nanomaterials to fabricate the vivid bionic structural color and intelligent stimulus responsive interface as smart skin or optical devices are widely concerned and remain a huge challenge. Here, the bionic flexible film is designed and fabricated with chiral nanointerface and tunable hydrophilic-hydrophobic by the ultrasonic energy perturbation strategy and crosslinking of the cellulose nanocrystals (CNC). An intelligent nanointerface with adjustable hydrophilic and hydrophobic properties is constructed by the supramolecular assembly using a smart ionic liquid molecule. The bionic flexible film possessed the variable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color. The reflective wavelength and the helical pitch of the film can be easily modulated through the ultrasonic energy perturbation strategy. The bionic flexible film by covalent cross-linking has excellent robustness, good elasticity and flexibility. The tunable brilliant structural color of the chiral nanointerface is attributed to the surface charge change of the CNC photonic crystal, which is disturbed by ultrasonic energy perturbation. The bionic flexible film with tunable structure color has intelligent hydrophilic and hydrophobic stimulus response properties. The chiral bionic materials have potential applications in smart skin, optical devices, bionic materials, robots, anti-counterfeiting, colorful displays, and stealth materials.
Collapse
Affiliation(s)
- Huanghuang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xufang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Aiqin Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiahui Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Teng Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kongliang Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Aiqin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, 312000, P. R. China
| |
Collapse
|
4
|
Li X, Yin Z, She Z, Wang Y, Khabibulla P, Kayumov J, Liu G, Zhou L, Zhu G. Structural Colored Fabric Based on Monodisperse Cu 2O Microspheres. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3238. [PMID: 38998321 PMCID: PMC11243497 DOI: 10.3390/ma17133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Structural-colored fabrics have been attracting much attention due to their eco-friendliness, dyelessness, and anti-fading properties. Monodisperse microspheres of metal, metal oxide, and semiconductors are promising materials for creating photonic crystals and structural colors owing to their high refractive indices. Herein, Cu2O microspheres were prepared by a two-step reduction method at room temperature; the size of Cu2O microspheres was controlled by changing the molar ratio of citrate to Cu2+; and the size of Cu2O microspheres was tuned from 275 nm to 190 nm. The Cu2O microsphere dispersions were prepared with the monodispersity of Cu2O microspheres. Furthermore, the effect of the concentration of Cu2O microsphere and poly(butyl acrylate) on the structural color was also evaluated. Finally, the stability of the structural color against friction and bending was also tested. The results demonstrated that the different structural colors of fabrics were achieved by adjusting the size of the Cu2O microsphere, and the color fastness of the structural color was improved by using poly(butyl acrylate) as the adhesive.
Collapse
Affiliation(s)
- Xiaowen Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (Z.S.); (G.L.); (L.Z.)
| | - Zhen Yin
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.Y.); (Y.W.)
| | - Zhanghan She
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (Z.S.); (G.L.); (L.Z.)
| | - Yan Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.Y.); (Y.W.)
- Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Parpiev Khabibulla
- Department of Technology of Textile Industry Products, Namangan Institute of Engineering and Technology, 7, Kasansay Street, Namangan 160115, Uzbekistan;
| | - Juramirza Kayumov
- Department of Civil Engineering, Samarkand State Architecture and Construction University, Samarkand 140143, Uzbekistan;
| | - Guojin Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (Z.S.); (G.L.); (L.Z.)
| | - Lan Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (Z.S.); (G.L.); (L.Z.)
| | - Guocheng Zhu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.Y.); (Y.W.)
- Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
5
|
Fernandes RDV, Pranovich A, Valyukh S, Zille A, Hallberg T, Järrendahl K. Iridescence Mimicking in Fabrics: A Ultraviolet/Visible Spectroscopy Study. Biomimetics (Basel) 2024; 9:71. [PMID: 38392117 PMCID: PMC10887316 DOI: 10.3390/biomimetics9020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Poly(styrene-methyl methacrylate-acrylic acid) photonic crystals (PCs), with five different sizes (170, 190, 210, 230 and 250 nm), were applied onto three plain fabrics, namely polyamide, polyester and cotton. The PC-coated fabrics were analyzed using scanning electronic microscopy and two UV/Vis reflectance spectrophotometric techniques (integrating sphere and scatterometry) to evaluate the PCs' self-assembly along with the obtained spectral and colors characteristics. Results showed that surface roughness of the fabrics had a major influence on the color produced by PCs. Polyamide-coated fabrics were the only samples having an iridescent effect, producing more vivid and brilliant colors than polyester and cotton samples. It was observed that as the angle of incident light increases, a hypsochromic shift in the reflection peak occurs along with the formation of new reflection peaks. Furthermore, color behavior simulations were performed with an illuminant A light source on polyamide samples. The illuminant A simulation showed greener and yellower structural colors than those illuminated with D50. The polyester and cotton samples were analyzed using scatterometry to check for iridescence, which was unseen upon ocular inspection and then proven to be present in these samples. This work allowed a better comprehension of how structural colors and their iridescence are affected by the textile substrate morphology and fiber type.
Collapse
Affiliation(s)
- Rui D V Fernandes
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
| | - Alina Pranovich
- Department of Science and Technology (ITN), Linköping University, SE-601 74 Norrköping, Sweden
- Media and Information Technology (MIT), Linköping University, SE-601 74 Norrköping, Sweden
| | - Sergiy Valyukh
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal
| | - Tomas Hallberg
- Division of Electromagnetic Warfare, Swedish Defense Research Agency (FOI), SE-583 30 Linköping, Sweden
| | - Kenneth Järrendahl
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
6
|
Li F, Song B, Luo R, Zhou Y, Xiong R, Zhang X, Xu W. Hierarchical Assembly of Patternable Chiroptical Biotextiles with Extreme Environment Stability. ACS NANO 2023; 17:22591-22600. [PMID: 37929926 DOI: 10.1021/acsnano.3c06463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flexible photonic textiles constructed by sustainable cholesteric organization are very promising to achieve a combination of chiroptical structural colors, mechanical robustness, sustainability, and environment stability. However, the efficient assembly of well-ordered cholesteric nanoarchitectures on flexible textiles in a scalable and patternable manner remains a grand challenge. In this study, we develop an efficient and scalable approach to construct large area chiroptical biotextiles using renewable and bioenabled cellulose nanocrystals (CNCs) as building blocks. This hierarchical assembly enables cholesteric photonic CNCs "cast" in situ, in a seamlessly tessellated design, onto topography-tailored textiles to form a strong interlocked multilayered structure. The resulting hierarchical architecture not only comprises strong photonic-photonic coupling to synergistically enhance the chiroptical properties with tunable wavelengths but also leads to impressive mechanical and optical stability against external mechanical forces and extreme environments. More importantly, through regulating the localized photonic band of the preformed chiroptical textiles by small molecules (e.g., water and glucose), customized colored patterns can be easily generated in large scale that are highly responsive to multistimuli, including chiral polarized light, view angle, and solvent. This chiroptical biotextile is a promising next-generation biomimetic photonic material for defense, aviation, and marine and aerospace special applications.
Collapse
Affiliation(s)
- Fangling Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Baiqi Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Richu Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yi Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China
| | - Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
7
|
Fu Y, Shi Q, Sun J, Li X, Pan C, Tang T, Peng T, Tan H. Construction of Wash-Resistant Photonic Crystal-Coated Fabrics based on Hydrogen Bonds and a Dynamically Cross-Linking Double-Network Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8480-8491. [PMID: 36748731 DOI: 10.1021/acsami.2c20581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Structural coloration as the most possible way to realize the ecofriendly dying process for textiles or fabrics has attracted significant attention in the past decades. However, photonic crystals (PCs) are a typical example of materials with structural color usually located on the surface of the fabrics or textiles, which make them not stable when rubbed, bent, or washed due to the weak interaction between the PC coatings and fabrics. Here, double networks were constructed between the PC coatings and the fabrics for the first time via a hydrogen bond by introducing tannic acid (TA) and dynamic cross-linking with 2-formylphenylboronic acid to increase the wash resistance of the structural colored fabrics. On modifying the monodispersed SiO2 nanoparticles, poly(dimethylsiloxane), and the fabrics, the interaction between the PC coatings and the fabrics increased by the formation of double networks. The structural color, wash, and rub resistance of the PC-coated fabrics were systematically studied. The obtained fabrics with the TA content at 0.030% (SiDT30) showed the best wash and rub resistance. The construction of double networks not only improved the wash and rub resistance of PCs but also retained the bright structural color of the PC coatings, facilitating the practical application of structural coloration in the textile industry.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tao Peng
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Bluestar Chengrand Co., Ltd., Chengdu, Sichuan 610041, China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
8
|
Shi Q, Li X, Fu Y, Sun J, Tang T, Wang X, Ma Y, Tan H. Structurally colored aramid fabric construction and its application as a recyclable photonic catalyst. SOFT MATTER 2023; 19:701-707. [PMID: 36601785 DOI: 10.1039/d2sm01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural colors can be used in fabric coloring due to their bright color and non-fading properties. However, it is still a challenge to construct structural color on high crystallinity, smooth surfaced and yellow colored aramid fabrics. Herein, for the first time, photonic crystals (PCs) with structural color were constructed on aramid fabrics by introducing dopamine to modify aramid fabrics and synthesizing monodisperse high refractive index zinc sulfide nanoparticles (ZnS). The influence of the PC coatings on the structural color, mechanical properties, and thermal stability of the structurally colored aramid fabrics or fibers was further investigated. Moreover, due to the excellent catalytic properties of ZnS and the slow photon effects of PCs, the structurally colored fabrics showed good photocatalytic properties, which will be beneficial in reusing the catalysts, which is crucial to their application in the coloring of fabrics but also facilitates the recycling of waste PC coated aramid fabrics.
Collapse
Affiliation(s)
- Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuyi Wang
- High-Tech Organic Fibers Key Laboratory of Sichuan Province and China, Bluestar Chengrand Co., Ltd, China
| | - Yubin Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
9
|
Li S, Li P, Wang L, Jia L. Preparation of Janus structural color sheets with flexibility, stability and low angle dependence based on textile. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tao J, Lu X. Tetraphenylbenzene-modified photonic crystal structure colour coating on fabric substrates for dual-mode anticounterfeiting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Ma W, Liu H, He W, Zhang Y, Li Y, Zhao Y, Li C, Zhou L, Shao J, Liu G. Preparation of Acrylic Yarns with Durable Structural Colors Based on Stable Photonic Crystals. ACS OMEGA 2022; 7:39750-39759. [PMID: 36385851 PMCID: PMC9647713 DOI: 10.1021/acsomega.2c03672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Structural coloration of photonic crystals (PCs) is considered an ecological and environmental way to achieve colorful textiles. However, constructing PCs with obvious structural colors on traditional flexible yarns is still a great challenge. As a secondary structure that forms textiles, compared with fibers and fabrics, the yarns are rougher, hindering the construction of regular PCs. In this work, the flexible acrylic yarns with vivid structural colors, named PC-based structural color yarns, were prepared by constructing regular PCs via assembling poly(styrene-butyl acrylate-methacrylate) (P(St-BA-MAA)) colloidal microspheres on yarns. Specifically, the properties of P(St-BA-MAA) colloidal microspheres were investigated. The PCs with better structural stability and obvious structural colors were prepared by presetting the acrylic adhesive layer on yarns. Moreover, the color durability and color regulation methods of prepared PC-based structural color yarns were evaluated and discussed. The results showed that the P(St-BA-MAA) colloidal microspheres exhibited even particle sizes, excellent monodispersity, and a typical hard core-soft shell structure. And the glass-transition temperature (T g) of the microspheres was tested to be about 65.6 °C. The cationic acrylate regarded as a pretreatment agent could not only improve the combination between the PC layers and the yarns by acting as a "bridge" but also enhance the structural color effect by smoothing the yarn surface. The results showed that when the mass fraction of cationic acrylate was 3 wt %, the microspheres were beneficial to access regular PCs with obvious structural colors. The PCs with bright structural colors could be constructed on black acrylic yarns, and the colors of yarns were still bright after rubbing and washing tests, indicating that the prepared PC-based structural color yarns have good color fastness. Moreover, the color hue of PC-based structural color yarns could be regulated by adjusting the particle sizes and viewing angles. This study provides strategic support for the structural coloration of flexible materials.
Collapse
Affiliation(s)
- Wanbin Ma
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Hao Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Wenyu He
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yunxiao Zhang
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yucheng Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yang Zhao
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Chengcai Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Lan Zhou
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Jianzhong Shao
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Guojin Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
12
|
Han Y, Meng Z, Wu Y, Zhang S, Wu S. Structural Colored Fabrics with Brilliant Colors, Low Angle Dependence, and High Color Fastness Based on the Mie Scattering of Cu 2O Spheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57796-57802. [PMID: 34797637 DOI: 10.1021/acsami.1c17288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Compared with conventional textile coloring with dyes and pigments, structural colored fabrics have attracted broad attention due to the advantages of eco-friendliness, brilliant colors, and anti-fading properties. The most investigated structural color on fabrics is originated from a band gap of multilayered photonic crystals or amorphous photonic structures. However, limited by the nature of the color generation mechanism and a multilayered structure, it is challenging to achieve structural colored fabrics with brilliant noniridescent colors and high fastness. Here, we propose an alternative strategy for coloring a fabric based on the scattering of Cu2O single-crystal spheres. The disordered Cu2O thin layers (<0.6 μm) on the surface of fabrics were prepared by a spraying method, which can generate vivid noniridescent structural color due to the strong Mie scattering of Cu2O single-crystal spheres. Importantly, the great mechanical stability of the structural color was realized by firmly binding Cu2O spheres to the fabric using a commercial binder. The structural color can be tuned by changing the diameter of Cu2O spheres. Furthermore, complex patterns can be easily obtained by spray coating Cu2O spheres with different particle sizes using a mask. According to color fastness test standards, the dry rubbing, wet rubbing, and light fastness of the structural color on fabric can reach level 5, level 4, and level 6, respectively, which is sufficient to resist rubbing, photobleaching, washing, rinsing, kneading, stretching, and other external mechanical forces. This coloring method may carve a practical avenue in textile coloring and has potentials in other practical applications of structural color.
Collapse
Affiliation(s)
- Yaqun Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
13
|
Wu Y, Liu Q, Li M, Zhang X, Hei X. Bright Structural Color and High Hydrophobic Properties of Photonic Crystal Films on the Ceramic Glaze Layer via Vertical Deposition Self‐Assembly Method. ChemistrySelect 2021. [DOI: 10.1002/slct.202102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan‐ting Wu
- School of Material Science and Engineering Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 PR China
| | - Qiu‐jun Liu
- School of Material Science and Engineering Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 PR China
| | - Meng‐long Li
- School of Material Science and Engineering Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 PR China
| | - Xin‐meng Zhang
- School of Material Science and Engineering Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 PR China
| | - Xi‐ping Hei
- School of Material Science and Engineering Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 PR China
| |
Collapse
|
14
|
Liu X, Yan P, Fang Y. Structural Coloration of Polyester Fabrics with High Colorfastness by Copolymer Photonic Crystals Containing Reactive Epoxy Groups. ACS OMEGA 2021; 6:28031-28037. [PMID: 34723003 PMCID: PMC8552361 DOI: 10.1021/acsomega.1c04057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 05/04/2023]
Abstract
Structural color as a revolutionary coloration strategy has been proposed to replace the traditional dyeing and printing process. However, the poor colorfastness and easy crack formation of structural colors on textile fabrics restrict their practical application at present. In this study, poly (tert-butyl acrylate-co-glycidyl methacrylate) (P(t-BA-co-GMA)) copolymers containing reactive epoxy groups with different mass ratios of tert-butyl acrylate (t-BA) and glycidyl methacrylate (GMA) were successfully synthesized, which were used to create structural colors on black polyester fabrics. The results showed that P(t-BA-co-GMA) nanospheres could form crack-free structural colors on polyester fabrics, and the colors vary with the mass ratio of t-BA and GMA to obtain five different colors. The different particle sizes of the different P(t-BA-co-GMA) nanospheres with different refractive indexes and the arrangement of short-range ordered and long-range disordered in microstructures may be the reason of different angle-independent structural colors on polyester fabrics. The P(t-BA-co-GMA) nanosphere structural colors on polyester fabrics possess good abrasion and washing colorfastness. This research provides the experimental basis for the development of crack-free amorphous photonic crystal structural color on fabrics with high colorfastness to promote the practical application of structural color in textile coloration.
Collapse
Affiliation(s)
- Xinhua Liu
- School
of Textile and Garment, Anhui Polytechnic
University, Wuhu 241000, China
- Technology
Public Service Platform for Textile Industry of Anhui Province, Wuhu 241000, China
| | - Peng Yan
- School
of Textile and Garment, Anhui Polytechnic
University, Wuhu 241000, China
| | - Yinchun Fang
- School
of Textile and Garment, Anhui Polytechnic
University, Wuhu 241000, China
- Anhui
Engineering and Technology Research Center of Textile, Wuhu 241000, China
| |
Collapse
|