1
|
Hossain MA, Illescas-Lopez S, Rahman MW, Mañas Torres MC, Contreras-Montoya R, Firouzeh S, Gavira JA, Álvarez de Cienfuegos L, Pramanik S. Efficient Transfer of Chirality in Complex Hybrid Materials and Impact on Chirality-induced Spin Selectivity. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:11449-11461. [PMID: 39678932 PMCID: PMC11635975 DOI: 10.1021/acs.chemmater.4c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Transfer of chirality, or transmission of asymmetric information from one system to another, plays an essential role in fundamental biological and chemical processes and, therefore, is essential for life. This phenomenon also holds immense potential in spintronics in the context of chirality-induced spin selectivity (CISS). In the CISS, the spatial arrangement of chiral molecules influences the spin state of electrons during the charge-transfer processes. Transfer of chirality from chiral molecules to an achiral material in a hybrid environment enables induction of spin polarization in the achiral material, thus vastly expanding the library of CISS-active electronic materials. Such "induced" CISS signals could have different responses compared to pure chiral molecules because the electronic properties of the achiral material come into play in the former case. In addition, multiple chiral sources can be used, which can have a nontrivial contribution to the induced CISS effect and can act either synergistically or antagonistically. This opens the way to achieving tunability of the CISS signals via chemical means. Earlier, such a chirality-transfer phenomenon and the resulting induced CISS effect were demonstrated in a hybrid system containing carbon nanotubes (CNTs) functionalized with a chiral agent (Fmoc-diphenylalanine l/d). In this context, we extend this result by investigating the role of an additional chiral moiety (l-lysozyme enzyme crystals) in this system. Here, the chiral crystal surrounds the chiral-functionalized CNTs, and we show that synergistic interactions result in more efficient chirality transfer, resulting in nontrivial changes in the CISS effect. This manifests in the form of (a) a stronger CISS signal compared to only one single chiral agent, (b) nonmonotonic temperature dependence and sign reversal of the CISS signal, and (c) persistence of the CISS signal at higher temperatures. Hybrid chiral materials with multiple chiral sources could, therefore, offer intricate control of the CISS signal via modification of its constituents, which is not possible in homogeneous chiral systems with single chiral sources.
Collapse
Affiliation(s)
- Md Anik Hossain
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Sara Illescas-Lopez
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Md Wazedur Rahman
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- National
Research Council Canada, Edmonton, AB T6N 1E4, Canada
| | - Mari C. Mañas Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | | | - Seyedamin Firouzeh
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto Andaluz de Ciencias
de la Tierra (Consejo Superior de Investigaciones Científicas), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, 18016 Granada, Spain
| | - Sandipan Pramanik
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
3
|
Singh H, Lawanprasert A, Utkarsh, Pimcharoen S, Dewan A, Rahoi D, Kirimanjeswara GS, Medina SH. Decoupling Fluorous Protein Coatings Yield Heat-Stable and Intrinsically Sterile Bioformulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38893-38904. [PMID: 39013021 PMCID: PMC11299136 DOI: 10.1021/acsami.4c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
Thermal inactivation is a major bottleneck to the scalable production, storage, and transportation of protein-based reagents and therapies. Failures in temperature control both compromise protein bioactivity and increase the risk of microorganismal contamination. Herein, we report the rational design of fluorochemical additives that promiscuously bind to and coat the surfaces of proteins to enable their stable dispersion within fluorous solvents. By replacing traditional aqueous liquids with fluorinated media, this strategy conformationally rigidifies proteins to preserve their structure and function at extreme temperatures (≥90 °C). We show that fluorous protein formulations resist contamination by bacterial, fungal, and viral pathogens, which require aqueous environments for survival, and display equivalent serum bioavailability to standard saline samples in animal models. Importantly, by designing dispersants that decouple from the protein surface in physiologic solutions, we deliver a fluorochemical formulation that does not alter the pharmacologic function or safety profile of the functionalized protein in vivo. As a result, this nonaqueous protein storage paradigm is poised to open technological opportunities in the design of shelf-stable protein reagents and biopharmaceuticals.
Collapse
Affiliation(s)
- Harminder Singh
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Atip Lawanprasert
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Utkarsh
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Sopida Pimcharoen
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Arshiya Dewan
- Department
of Veterinary and Biomedical Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| | - Dane Rahoi
- Animal
Diagnostics Laboratory, Pennsylvania State
University, University Park, Pennsylvania 16802-4400, United States
| | - Girish S. Kirimanjeswara
- Department
of Veterinary and Biomedical Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Center
for Infectious Disease Dynamics, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Center
for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
- Huck
Institutes
of the Life Sciences, Pennsylvania State
University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
4
|
Liutkus M, Sasselli IR, Rojas AL, Cortajarena AL. Diverse crystalline protein scaffolds through metal-dependent polymorphism. Protein Sci 2024; 33:e4971. [PMID: 38591647 PMCID: PMC11002994 DOI: 10.1002/pro.4971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.
Collapse
Affiliation(s)
- Mantas Liutkus
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
| | - Ivan R. Sasselli
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- Present address:
Centro de Física de Materiales (CFM)CSIC‐UPV/EHUSan SebastiánSpain
| | - Adriana L. Rojas
- Centre for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceBilbaoSpain
| | - Aitziber L. Cortajarena
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
5
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
6
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
7
|
Illescas-Lopez S, Martin-Romera JD, Mañas-Torres MC, Lopez-Lopez MT, Cuerva JM, Gavira JA, Carmona FJ, Álvarez de Cienfuegos L. Short-Peptide Supramolecular Hydrogels for In Situ Growth of Metal-Organic Framework-Peptide Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390355 DOI: 10.1021/acsami.3c06943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.
Collapse
Affiliation(s)
- Sara Illescas-Lopez
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Javier D Martin-Romera
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Departamento de Física Aplicada, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| |
Collapse
|
8
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
9
|
Gila-Vilchez C, Mañas-Torres MC, García-García ÓD, Escribano-Huesca A, Rodríguez-Arco L, Carriel V, Rodriguez I, Alaminos M, Lopez-Lopez MT, Álvarez de Cienfuegos L. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS APPLIED POLYMER MATERIALS 2023; 5:2154-2165. [PMID: 36935654 PMCID: PMC10013376 DOI: 10.1021/acsapm.2c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Fibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications. One solution to these problems is to obtain composite gels made of fibrin and other polymeric compounds that improve their mechanical properties and usage. Herein, we prepared composite hydrogels made by the self-assembly of fibrinogen together with Fmoc-FF (Fmoc-diphenylalanine) and Fmoc-RGD (Fmoc-arginine-glycine-aspartic acid). We have shown that the mixture of these three peptides co-assembles and gives rise to a unique type of supramolecular fiber, whose morphology and mechanical properties can be modulated. We have carried out a complete characterization of these materials from chemical, physical, and biological points of view. Composite gels have improved mechanical properties compared to pure fibrin gels, as well as showing excellent biocompatibility ex vivo. In vivo experiments have shown that these gels do not cause any type of inflammatory response or tissue damage and are completely resorbed in short time, which would enable their use as vehicles for cell, drug, or growth factor release.
Collapse
Affiliation(s)
- Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Mari Carmen Mañas-Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Óscar Darío García-García
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Alfredo Escribano-Huesca
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
| | - Laura Rodríguez-Arco
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Víctor Carriel
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Ismael Rodriguez
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Miguel Alaminos
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| |
Collapse
|
10
|
Liu H, Zhao Y, Sun J. Heterogeneous Nucleation in Protein Crystallization. Biomimetics (Basel) 2023; 8:68. [PMID: 36810399 PMCID: PMC9944892 DOI: 10.3390/biomimetics8010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Protein crystallization was first discovered in the nineteenth century and has been studied for nearly 200 years. Protein crystallization technology has recently been widely used in many fields, such as drug purification and protein structure analysis. The key to successful crystallization of proteins is the nucleation in the protein solution, which can be influenced by many factors, such as the precipitating agent, temperature, solution concentration, pH, etc., among which the role of the precipitating agent is extremely important. In this regard, we summarize the nucleation theory of protein crystallization, including classical nucleation theory, two-step nucleation theory, and heterogeneous nucleation theory. We focus on a variety of efficient heterogeneous nucleating agents and crystallization methods as well. The application of protein crystals in crystallography and biopharmaceutical fields is further discussed. Finally, the bottleneck of protein crystallization and the prospect of future technology development are reviewed.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue Zhao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Ashames A, Pervaiz F, Al-Tabakha M, Khalid K, Hassan N, Shoukat H, Buabeid M, Murtaza G. Synthesis of cross-linked carboxymethyl cellulose and poly (2-acrylamido-2-methylpropane sulfonic acid) hydrogel for sustained drug release optimized by Box-Behnken Design. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Illescas-Lopez S, Cuerva JM, Lopez-Lopez MT, de Cienfuegos LÁ, Pramanik S. Chirality-Induced Spin Selectivity in Heterochiral Short-Peptide-Carbon-Nanotube Hybrid Networks: Role of Supramolecular Chirality. ACS NANO 2022; 16:16941-16953. [PMID: 36219724 DOI: 10.1021/acsnano.2c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Mari C Mañas-Torres
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Sara Illescas-Lopez
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Juan Manuel Cuerva
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
13
|
Savchenko M, Hurtado M, Lopez-Lopez MT, Rus G, Álvarez de Cienfuegos L, Melchor J, Gavira JA. Lysozyme crystallization in hydrogel media under ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2022; 88:106096. [PMID: 35868210 PMCID: PMC9305616 DOI: 10.1016/j.ultsonch.2022.106096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.
Collapse
Affiliation(s)
- Mariia Savchenko
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Manuel Hurtado
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Guillermo Rus
- Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - Juan Melchor
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
14
|
Mañas‐Torres MC, Illescas‐Lopez S, Gavira JA, de Cienfuegos LÁ, Marchesan S. Interactions Between Peptide Assemblies and Proteins for Medicine. Isr J Chem 2022. [DOI: 10.1002/ijch.202200018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mari C. Mañas‐Torres
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - Sara Illescas‐Lopez
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR) Avenida de las Palmeras 4 18100 Armilla, UEQ Granada Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
- Instituto de Investigación Biosanitaria ibs Granada Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department University of Trieste Via L. Giorgieri 1 Trieste 34127 Italy
| |
Collapse
|
15
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
16
|
Mañas-Torres MC, Ramírez-Rodríguez GB, García-Peiro JI, Parra-Torrejón B, Cuerva JM, Lopez-Lopez MT, Álvarez de Cienfuegos L, Delgado-López JM. Organic/inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01249e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid hydrogels with a tunable structure–function relationship were prepared by simultaneous self-assembly and mineralization of aromatic short-peptides. Sub-stoichiometric Ca concentrations resulted in nanoapatite oriented along the peptide fiber.
Collapse
Affiliation(s)
- Mari C. Mañas-Torres
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
| | - Gloria B. Ramírez-Rodríguez
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| | - José I. García-Peiro
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009, Zaragoza, y Departamento de Ingeniería Química y Tecnología Medioambiental (IQTMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Belén Parra-Torrejón
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| | - Juan M. Cuerva
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
| | - Modesto T. Lopez-Lopez
- Dpto de Física Aplicada, Facultad de Ciencias, (UGR), Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Luis Álvarez de Cienfuegos
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - José M. Delgado-López
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| |
Collapse
|
17
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Molecular Functionalization and Emergence of Long-Range Spin-Dependent Phenomena in Two-Dimensional Carbon Nanotube Networks. ACS NANO 2021; 15:20056-20066. [PMID: 34870421 DOI: 10.1021/acsnano.1c07739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 μm. This result effectively connects the area of molecular spintronics with that of carbon-based 2D nanoelectronics. By using the versatility of peptide chemistry, we further demonstrate how spin polarization depends on molecular structural features such as chirality as well as molecule-nanotube interactions. A chirality-independent effect was detected in addition to the more common chirality-dependent effect, and the overall spin signal was found to be a combination of both. Finally, the magnetic field dependence of the spin signals has been explored, and the "chirality-dependent" signal has been found to exist only in certain field angles.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| |
Collapse
|
18
|
Mañas-Torres MC, Gila-Vilchez C, Vazquez-Perez FJ, Kuzhir P, Momier D, Scimeca JC, Borderie A, Goracci M, Burel-Vandenbos F, Blanco-Elices C, Rodriguez IA, Alaminos M, de Cienfuegos LÁ, Lopez-Lopez MT. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49692-49704. [PMID: 34645258 PMCID: PMC8554763 DOI: 10.1021/acsami.1c13972] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.
Collapse
Affiliation(s)
- Mari C. Mañas-Torres
- Universidad
de Granada, Departamento de Química Orgánica, Facultad
de Ciencias, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Cristina Gila-Vilchez
- Universidad
de Granada, Departamento de
Física Aplicada, Facultad de Ciencias, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | - Pavel Kuzhir
- Université
Côte d’Azur, CNRS UMR 7010, Institute of Physics of Nice, Parc Valrose, 06108 Nice, France
| | - David Momier
- Université
Côte d’Azur, CNRS UMR 7277, Institute of Biology Valrose, 06107 Nice, France
| | - Jean-Claude Scimeca
- Université
Côte d’Azur, CNRS UMR 7277, Institute of Biology Valrose, 06107 Nice, France
| | - Arnaud Borderie
- Université
Côte d’Azur, Department of Pathology, CHU Nice, 06107 Nice, France
| | - Marianne Goracci
- Université
Côte d’Azur, Department of Pathology, CHU Nice, 06107 Nice, France
| | | | - Cristina Blanco-Elices
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- University
of Granada, Department of Histology and
Tissue Engineering Group, Faculty of Medicine, 18071 Granada, Spain
| | - Ismael A. Rodriguez
- University
of Granada, Department of Histology and
Tissue Engineering Group, Faculty of Medicine, 18071 Granada, Spain
- Department
of Histology, Faculty of Dentistry, National
University of Cordoba, 5000 Cordoba, Argentina
| | - Miguel Alaminos
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- University
of Granada, Department of Histology and
Tissue Engineering Group, Faculty of Medicine, 18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad
de Granada, Departamento de Química Orgánica, Facultad
de Ciencias, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Modesto T. Lopez-Lopez
- Universidad
de Granada, Departamento de
Física Aplicada, Facultad de Ciencias, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
19
|
Maikawa CL, Mann JL, Kannan A, Meis CM, Grosskopf AK, Ou BS, Autzen AAA, Fuller GG, Maahs DM, Appel EA. Engineering Insulin Cold Chain Resilience to Improve Global Access. Biomacromolecules 2021; 22:3386-3395. [PMID: 34213889 PMCID: PMC8627795 DOI: 10.1021/acs.biomac.1c00474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L. Maikawa
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Joseph L. Mann
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Aadithya Kannan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Catherine M. Meis
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
| | - Anton A. A. Autzen
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - David M. Maahs
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Diabetes Research Center, Stanford University, Stanford, California 94305, United States
- Stanford CHEM-H Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Giuri D, Marshall LJ, Dietrich B, McDowall D, Thomson L, Newton JY, Wilson C, Schweins R, Adams DJ. Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chem Sci 2021; 12:9720-9725. [PMID: 34349943 PMCID: PMC8293982 DOI: 10.1039/d1sc02347k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | | | - Bart Dietrich
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Daniel McDowall
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Lisa Thomson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Jenny Y Newton
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Claire Wilson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs, CS 20156 F-38042 Grenoble CEDEX 9 France
| | - Dave J Adams
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
21
|
Tuning Transport Phenomena in Agarose Gels for the Control of Protein Nucleation Density and Crystal Form. CRYSTALS 2021. [DOI: 10.3390/cryst11050466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Agarose gels provide the ideal environment for studying the nucleation step of complex biomacromolecules under diffusion-controlled conditions. In the present paper, we characterized the influence of agarose on the nucleation of three model proteins, i.e., lysozyme, insulin, and proteinase K, as a function of the agarose concentration using a batch method set-up inside flat capillaries. By using this set-up, we were able to directly count the number of crystals in a given volume and correlate it with the amount of agarose and with the average crystal size. We also studied the crystallization behavior of proteinase K with free-interface diffusion so that batch conditions were achieved through slow diffusion of the precipitant. Thanks to the control over the protein mass transport imposed by the network, a previously unknown crystal form, P212121, was obtained, and the three-dimensional structure was determined at a 1.6 Å resolution. Overall, the versatility of agarose gels makes them ideal candidates for the preparation of microcrystalline suspensions of biopharmaceuticals with precise and reproducible crystal attributes or for the exploration of the existence of different polymorphs.
Collapse
|