1
|
Xu J, Zhao H, Yu X, Zou H, Hu J, Chen Z. Floating Photothermal Hydrogen Production. CHEMSUSCHEM 2025; 18:e202401307. [PMID: 39176998 DOI: 10.1002/cssc.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Solar-to-hydrogen (STH) is emerging as a promising approach for energy storage and conversion to contribute to carbon neutrality. The lack of efficient catalysts and sustainable reaction systems is stimulating the fast development of photothermal hydrogen production based on floating carriers to achieve unprecedented STH efficiency. This technology involves three major components: floating carriers with hierarchically porous structures, photothermal materials for solar-to-heat conversion and photocatalysts for hydrogen production. Under solar irradiation, the floating photothermal system realizes steam generation which quickly diffuses to the active site for sustainable hydrogen generation with the assistance of a hierarchically porous structure. Additionally, this technology is endowed with advantages in the high utilization of solar energy and catalyst retention, making it suitable for various scenarios, including domestic water supply, wastewater treatment, and desalination. A comprehensive overview of the photothermal hydrogen production system is present due to the economic feasibility for industrial application. The in-depth mechanism of a floating photothermal system, including the solar-to-heat effect, steam diffusion, and triple-phase interaction are highlighted by elucidating the logical relationship among buoyant carriers, photothermal materials, and catalysts for hydrogen production. Finally, the challenges and new opportunities facing current photothermal catalytic hydrogen production systems are analyzed.
Collapse
Affiliation(s)
- Jian Xu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Heng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Xinti Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Haiyan Zou
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Zhangxing Chen
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| |
Collapse
|
2
|
Dai B, Gao C, Guo J, Ding M, Xu Q, He S, Mou Y, Dong H, Hu M, Dai Z, Zhang Y, Xie Y, Lin Z. A Robust Pyro-phototronic Route to Markedly Enhanced Photocatalytic Disinfection. NANO LETTERS 2024. [PMID: 38606881 DOI: 10.1021/acs.nanolett.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoxiong He
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Mingao Hu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| |
Collapse
|
3
|
He Y, Yang J, Wang Y, Jiang J, Wang J, Tao H, Yang Y, Wang T, Lin J, Dong X. Femtosecond Laser Combined with Hydrothermal Method to Construct Three-Dimensional Spatially Distributed Wurtzite ZnO Micro/Nanostructures to Enhance Photocatalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320304 DOI: 10.1021/acs.langmuir.3c03840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Conventional approaches employing nanopowder particles or deposition photocatalytic nanofilm materials encounter challenges such as performance instability, susceptibility to detachment, and recycling complications in practical photocatalytic scenarios. In this study, a novel fabrication strategy is proposed that uses femtosecond laser direct writing of self-sourced metal to prepare a self-supporting microstructure substrate and combines the hydrothermal method to construct a three-dimensional spatially distributed metal oxide micro/nanostructure. The obtained wurtzite ZnO micro/nanostructure has excellent wetting properties while obtaining a larger specific surface area and can achieve effective adsorption of methyl orange molecules. Moreover, the tight integration of ZnO with the surface interface of the self-sourced metal microstructure substrate will facilitate efficient charge transfer. Simultaneously, it improves the efficiency of light utilization (absorption) and the number of active sites in the photocatalytic process, ultimately leading to excellent photodegradation stability. This result provides an innovative technology solution for achieving efficient semiconductor surface-interface photocatalytic performance and stability.
Collapse
Affiliation(s)
- Yaowen He
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Junhui Yang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yun Wang
- Nuclear Power Institute of China, Chengdu 610213, China
| | - Jiayao Jiang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Jialu Wang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Haiyan Tao
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528637, China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Jingquan Lin
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528637, China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
4
|
Zhao S, Zhang C, Wang S, Lu K, Wang B, Huang J, Peng H, Li N, Liu M. Photothermally driven decoupling of gas evolution at the solid-liquid interface for boosted photocatalytic hydrogen production. NANOSCALE 2023; 16:152-162. [PMID: 38063805 DOI: 10.1039/d3nr04937j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The slow mass transfer, especially the gas evolution process at the solid-liquid interface in photocatalytic water splitting, restricts the overall efficiency of the hydrogen evolution reaction. Here, we report a novel gas-solid photocatalytic reaction system by decoupling hydrogen generation from a traditional solid-liquid interface. The success relies on annealing commercial melamine sponge (AMS) for effective photothermal conversion that leads to rapid water evaporation. The vapor flows towards the photocatalyst covering the surface of the AMS and is split by the catalyst therein. This liquid-gas/gas-solid coupling system avoids the formation of photocatalytic bubbles at the solid-liquid interface, leading to significantly improved mass transfer and conversion. Utilizing CdS nanorods anchored by highly dispersed nickel atoms/clusters as a model photocatalyst, the highest hydrogen evolution rate from water splitting reaches 686.39 μmol h-1, which is 5.31 times that of the traditional solid-liquid-gas triphase system. The solar-to-hydrogen (STH) efficiency can be up to 2.06%. This study provides a new idea for the design and construction of efficient practical photocatalytic systems.
Collapse
Affiliation(s)
- Shidong Zhao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Shujian Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Kejian Lu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Biao Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jie Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Hao Peng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing 211189, Jiangsu, P. R. China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
- Suzhou Academy of Xi'an Jiaotong University, Suzhou, Jiangsu 215123, P. R. China
- Gree Altairnano New Energy Inc, Zhuhai, Guangdong 519040, P. R. China
| |
Collapse
|
5
|
Dai B, Guo J, Gao C, Yin H, Xie Y, Lin Z. Recent Advances in Efficient Photocatalysis via Modulation of Electric and Magnetic Fields and Reactive Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210914. [PMID: 36638334 DOI: 10.1002/adma.202210914] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.e., piezoelectric, pyroelectric, and triboelectric fields, as well as their coupling) with specific examples and mechanisms discussion are first examined. Subsequently, the strategy via magnetic field manipulation for enhancing photocatalytic performance is scrutinized, including the spin polarization, Lorentz force, and magnetoresistance effect. Afterward, materials with tailored structure and composition design enabled by reactive phase control and their applications in photocatalytic hydrogen evolution and carbon dioxide reduction are reviewed. Finally, the challenges and potential opportunities to further boost photocatalytic efficiency are presented, aiming at providing crucial theoretical and experimental guidance for those working in photocatalysis, ferroelectrics, triboelectrics, piezo-/pyro-/tribo-phototronics, and electromagnetics, among other related areas.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hang Yin
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 118425, Singapore
| |
Collapse
|
6
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Zaman N, Iqbal N, Noor T. Advances and challenges of MOF derived carbon-based electrocatalysts and photocatalyst for water splitting: a review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Sun M, Wang Y, Dong T, Zhou L, Dai A, Kou J, Lu C. Construction of an Interfacial Photocatalytic Mode Based on Carbonized Mushrooms to Enhance Infrared Light-Assisted Photocatalytic Water Splitting Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2811-2820. [PMID: 35191704 DOI: 10.1021/acs.langmuir.1c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To find a more efficient way to generate photocatalytic hydrogen, we developed the interfacial photocatalytic mode, in which the photocatalytic reaction can be transferred to a high-energy interfacial area. The new interfacial mode in this work is assembled with the help of carbonized mushrooms, which is an ideal water transporter as well as an excellent photothermal converter. The higher temperature from efficient light-to-heat conversion performance and thermal localization promote the efficiency of hydrogen evolution, and some effects peculiar to the interfacial mode can make the departure of hydrogen from the active sites of the photocatalyst smoother. As a result, the active sites can be exposed in a timely manner to allow the progress of the next cycle of the photocatalytic reaction to be smoother. The efficiency of interfacial photocatalytic hydrogen production can reach >10 times that of the corresponding sample in the traditional bulk water mode. This work has allowed further exploration of the construction of the interfacial photocatalytic mode, provided a reliable experimental basis for the development of the interfacial mode, and illuminated a new path for the development of photocatalytic water splitting.
Collapse
Affiliation(s)
- Menglong Sun
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yuebing Wang
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Tengguo Dong
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ling Zhou
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Anqi Dai
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jiahui Kou
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunhua Lu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Xiaoning W, Haowen C, Kang W, Xitao W. Insights into thermally assisted photocatalytic overall water splitting over ZnTi-LDH in a gas–solid reaction system. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2O2 and bridge hydroxyl groups form because of water splitting. This process occurs intensely with the addition of heat, resulting in generation of more intermediates. Meanwhile, the separation of electrons and holes is accelerated by the heat.
Collapse
Affiliation(s)
- Wang Xiaoning
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chen Haowen
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wang Kang
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Chemical Engineering Research Center, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wang Xitao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|