1
|
Taniguchi A, Nakamura T, Konno TJ. Electrochemical Deposition of Fe/FeOOH Nanoforest Catalyst: Growth Mechanism and Structural Self-Optimization. NANO LETTERS 2025; 25:5140-5147. [PMID: 40111389 DOI: 10.1021/acs.nanolett.4c05943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Hierarchical nanostructures provide a platform to build functional materials. Here, we report a one-step electrochemical deposition of Fe/FeOOH nanoforests, where tree-like three-dimensional (3D) architectures comprising one-dimensional (1D) metallic Fe branches and two-dimensional (2D) FeOOH leaves are uniformly and densely grown on the substrate to form a forest-like assembly. Detailed microscopic observations reveal that the hierarchical structure is organized through the multidimensional oriented attachment of FeOOH nuclei, followed by the internal reduction to Fe nanowires. The coupling between the catalytically active FeOOH leaves and the electrically conductive Fe nanowires provides superior catalytic activity and durability for the oxygen evolution reaction (OER). Furthermore, the excess FeOOH layer is selectively eliminated during OER operation, leading to self-optimization of the catalytic activity.
Collapse
Affiliation(s)
- Asako Taniguchi
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| | - Takako Nakamura
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| | - Toyohiko J Konno
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
2
|
Zhang ZJ, Xu HM, Huang CJ, Shuai TY, Zhan QN, Li GR. Recent advances in the synthesis of transition metal hydroxyl oxide catalysts and their application in electrocatalytic oxygen evolution reactions. NANOSCALE 2024; 16:19970-19997. [PMID: 39412523 DOI: 10.1039/d4nr02400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
With the extensive use of fossil energy, people will face the depletion of fossil energy and increasingly severe problems. As a non-polluting, high specific energy density energy source, hydrogen energy is expected to solve this problem by producing hydrogen through electrolysis of water through renewable energy power generation. Water electrolysis technology involves two important half-reactions: the cathode hydrogen evolution reaction (HER) and anode oxygen evolution reaction (OER). The OER is a 4-electron transfer process with a high energy barrier. In order to achieve higher energy conversion, OER catalyst technology is a key part of the process. Researchers have conducted a lot of research into high-performance, high-stability, and highly economical OER catalysts, among which oxyhydroxide (MOOH), as an active substance for OER, has received particular attention. This article provides a timely follow-up to the research on oxyhydroxides, first introducing the two catalytic mechanisms of OER, namely the adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM). Then, strategies are proposed to improve OER catalytic performance by increasing catalytic active surface area/active sites, optimizing intermediate adsorption energy based on the AEM, triggering the LOM, and enhancing catalyst stability. Finally, the challenges and future development directions of MOOH catalysts are analyzed, which provides guidance for the design and preparation of high-performance OER catalysts in the future.
Collapse
Affiliation(s)
- Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Chen TW, Chen SM, Anushya G, Kannan R, Veerakumar P, Alam MM, Alargarsamy S, Ramachandran R. Metal-Oxides- and Metal-Oxyhydroxides-Based Nanocomposites for Water Splitting: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2012. [PMID: 37446527 DOI: 10.3390/nano13132012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Water electrolysis is an important alternative technology for large-scale hydrogen production to facilitate the development of green energy technology. As such, many efforts have been devoted over the past three decades to producing novel electrocatalysis with strong electrochemical (EC) performance using inexpensive electrocatalysts. Transition metal oxyhydroxide (OxH)-based electrocatalysts have received substantial interest, and prominent results have been achieved for the hydrogen evolution reaction (HER) under alkaline conditions. Herein, the extensive research focusing on the discussion of OxH-based electrocatalysts is comprehensively highlighted. The general forms of the water-splitting mechanism are described to provide a profound understanding of the mechanism, and their scaling relation activities for OxH electrode materials are given. This paper summarizes the current developments on the EC performance of transition metal OxHs, rare metal OxHs, polymers, and MXene-supported OxH-based electrocatalysts. Additionally, an outline of the suggested HER, OER, and water-splitting processes on transition metal OxH-based electrocatalysts, their primary applications, existing problems, and their EC performance prospects are discussed. Furthermore, this review article discusses the production of energy sources from the proton and electron transfer processes. The highlighted electrocatalysts have received substantial interest to boost the synergetic electrochemical effects to improve the economy of the use of hydrogen, which is one of best ways to fulfill the global energy requirements and address environmental crises. This article also provides useful information regarding the development of OxH electrodes with a hierarchical nanostructure for the water-splitting reaction. Finally, the challenges with the reaction and perspectives for the future development of OxH are elaborated.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ganesan Anushya
- Department of Physics, St. Joseph College of Engineering, Chennai 602117, India
| | - Ramanujam Kannan
- Department of Chemistry, Sri Kumara Gurupara Swamigal Arts College, Thoothukudi 628619, India
| | - Pitchaimani Veerakumar
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Mohammed Mujahid Alam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Saranvignesh Alargarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India
| |
Collapse
|
5
|
Dajan FT, Sendeku MG, Wu B, Gao N, Anley EF, Tai J, Zhan X, Wang Z, Wang F, He J. Ce Site in Amorphous Iron Oxyhydroxide Nanosheet toward Enhanced Electrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207999. [PMID: 37012608 DOI: 10.1002/smll.202207999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/26/2023] [Indexed: 06/19/2023]
Abstract
Iron oxyhydroxide has been considered an auspicious electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis due to its suitable electronic structure and abundant reserves. However, Fe-based materials seriously suffer from the tradeoff between activity and stability at a high current density above 100 mA cm-2 . In this work, the Ce atom is introduced into the amorphous iron oxyhydroxide (i.e., CeFeOx Hy ) nanosheet to simultaneously improve the intrinsic electrocatalytic activity and stability for OER through regulating the redox property of iron oxyhydroxide. In particular, the Ce substitution leads to the distorted octahedral crystal structure of CeFeOx Hy , along with a regulated coordination site. The CeFeOx Hy electrode exhibits a low overpotential of 250 mV at 100 mA cm-2 with a small Tafel slope of 35.1 mVdec-1 . Moreover, the CeFeOx Hy electrode can continuously work for 300 h at 100 mA cm-2 . When applying the CeFeOx Hy nanosheet electrode as the anode and coupling it with the platinum mesh cathode, the cell voltage for overall water splitting can be lowered to 1.47 V at 10 mA cm-2 . This work offers a design strategy for highly active, low-cost, and durable material through interfacing high valent metals with earth-abundant oxides/hydroxides.
Collapse
Affiliation(s)
- Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Binglan Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Ning Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Eyaya Fekadie Anley
- School of Physics and Micro-electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jing Tai
- Testing and Analysis Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fengmei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of physics and technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
6
|
Zheng Y, Yu D, Xu W, Zhang K, Ma K, Guo X, Lou Y, Hu M. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis. Dalton Trans 2023; 52:3493-3500. [PMID: 36846870 DOI: 10.1039/d2dt03857a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Electrochemical water splitting is a potential green hydrogen energy generation technique. With the shortage of fresh water, abundant seawater resources should be developed as the main raw material for water electrolysis. However, since the precipitation reaction of chloride ions in seawater will compete with the oxygen evolution reaction (OER) and corrode the catalyst, seawater electrolysis is restricted by the decrease in activity, low stability, and selectivity. Rational design and development of efficient and stable catalysts is the key to seawater electrolysis. Herein, a high-activity bimetallic phosphide FeCoP, grown on a reduced graphene oxide (rGO)-protected Ni Foam (NF) substrate using FeCo Prussian Blue Analogue (PBA) as a template, was designed for application in alkaline natural seawater electrolysis. The OER activity confirmed that the formed FeCoP@rGO/NF has high electrocatalytic performance. In 1 M KOH and natural alkaline seawater, the overpotential was only 257 mV and 282 mV under 200 mA cm-2, respectively. It also demonstrated long-term stability up to 200 h. Therefore, this study provides new insight into the application of PBA as a precursor of bimetallic phosphide in the electrolysis of seawater at high current density.
Collapse
Affiliation(s)
- Yingping Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China. .,Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Dehua Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Wei Xu
- Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Xinyu Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Mulin Hu
- Hefei Technology College, Hefei 238000, P. R. China
| |
Collapse
|
7
|
Huang C, Chu PK. Recommended practices and benchmarking of foam electrodes in water splitting. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Peng X, Tian J, Zhang S, Xiao W, Tian X, Wang Y, Xue J, Lei D. Z-Scheme Transfer Pathway Assisted Photoelectrocatalyst Zn2SnO4/rGO/Ag/AgBr for Organic Pollutants Treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ye Q, Li L, Li H, Gu X, Han B, Xu X, Wang F, Li B. Quasi-Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large-Current-Density Oxygen Evolution Electrocatalysis. CHEMSUSCHEM 2022; 15:e202101873. [PMID: 34716664 DOI: 10.1002/cssc.202101873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec-1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm-2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm-2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Collapse
Affiliation(s)
- Qinglan Ye
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lingfeng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hangyang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangyang Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Boming Han
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xuetang Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
10
|
Liu J, Li H, Cai J, Liu J, Liu Y, Sun Z, He X, Qu D, Li X. Enhanced oxygen evolution performance by partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in Fe-containing alkaline electrolyte. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01558c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we employ a partial phase conversion strategy to transform cobalt/nickel carbonate hydroxide (CoxNiyCH) nanosheet arrays in Fe-containing KOH electrolyte. The optimized sample exhibits a remarkable electrocatalytic activity (η50 =...
Collapse
|