1
|
Han W, Gao W, Wang X. Enhanced Magnetic Soft Robotics: Integrating Fiber Optics and 3D Printing for Rapid Actuation and Precision Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30396-30407. [PMID: 38820388 DOI: 10.1021/acsami.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Timely, accurate, and rapid grasping of dynamic change information in magnetic actuation soft robots is essential for advancing their evolution toward intelligent, integrated, and multifunctional systems. However, existing magnetic-actuation soft robots lack effective functions for integrating sensing and actuation. Herein, we demonstrate the integration of distributed fiber optics technology with advanced-programming 3D printing techniques. This integration provides our soft robots unique capabilities such as integrated sensing, precise shape reconstruction, controlled deformation, and sophisticated magnetic navigation. By utilizing an improved magneto-mechanical coupling model and an advanced inversion algorithm, we successfully achieved real-time reconstruction of complex structures, such as 'V', 'N', and 'M' shapes and gripper designs, with a notable response time of 34 ms. Additionally, our robots demonstrate proficiency in magnetic navigation and closed-loop deformation control, making them ideal for operation in confined or obscured environments. This work thus provides a transformative strategy to meet unmet demands in the rapidly growing field of soft robotics, especially in establishing the theoretical and technological foundation for constructing digitized robots.
Collapse
Affiliation(s)
- Wenheng Han
- Key Laboratory of Mechanics on Western Disaster and Environment, MoE, College of Civil Engineering and Mechanic, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Gao
- School of Science, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Xingzhe Wang
- Key Laboratory of Mechanics on Western Disaster and Environment, MoE, College of Civil Engineering and Mechanic, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
2
|
Fu Y, Zhao S, Zhang B, Tian Y, Wang D, Ban X, Ma Y, Jiang L, Wan Z, Wei Z. Multifunctional cross-sensitive magnetic alginate-chitosan-polyethylene oxide nanofiber sensor for human-machine interaction. Int J Biol Macromol 2024; 264:130482. [PMID: 38431006 DOI: 10.1016/j.ijbiomac.2024.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Flexible nanofiber membranes are compelling materials for the development of functional multi-mode sensors; however, their essential features such as high cross-sensitivity, reliable stability and signal discrimination capability have rarely been realized simultaneously in one sensor. Here, a novel multi-mode sensor with a nanofiber membrane structure based on multiple interpenetrating networks of bidisperse magnetic particles, sodium alginate (SA), chitosan (CHI) in conjunction with polyethylene oxide hydrogels was prepared in a controllable electrospinning technology. Specifically, the morphology distributions of nanofibers could be regulated by the crosslinking degree of the interpenetrating networks and the spinning process parameters. The incorporation of SA and CHI endowed the sensor with desirable flexibility, ideal biocompatibility and skin-friendly property. Besides, the assembled sensors not only displayed preferable magnetic sensitivity of 0.34 T-1 and reliable stability, but also exhibited favorable cross-sensitivity, quick response time, and long-term durability for over 5000 cycles under various mechanical stimuli. Importantly, the multi-mode stimuli could be discriminated via producing opposite electrical signals. Furthermore, based on the signal distinguishability of the sensor, a wearable Morse code translation system assisted by the machine learning algorithm was demonstrated, enabling a high recognizing accuracy (>99.1 %) for input letters and numbers information. Due to the excellent multifunctional sensing characteristics, we believe that the sensor will have a high potential in wearable soft electronics and human-machine interactions.
Collapse
Affiliation(s)
- Yu Fu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shijie Zhao
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Boqiang Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Dong Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xinxing Ban
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuelong Ma
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lin Jiang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zhenshuai Wan
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zunghang Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
3
|
Kostrov SA, Marshall JH, Maw M, Sheiko SS, Kramarenko EY. Programming and Reprogramming the Viscoelasticity and Magnetic Response of Magnetoactive Thermoplastic Elastomers. Polymers (Basel) 2023; 15:4607. [PMID: 38231994 PMCID: PMC10708547 DOI: 10.3390/polym15234607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The polymer medium is an A-g-B bottlebrush graft copolymer with side chains of two types: polydimethylsiloxane and polystyrene. At room temperature, the brush-like architecture provides the tissue mimetic softness and strain stiffening of the elastomeric matrix, which is formed through the aggregation of polystyrene side chains into aggregates that play the role of physical cross-links. The aggregates partially dissociate and the matrix softens at elevated temperatures, allowing for the effective rearrangement of magnetic particles by applying a magnetic field in the desired direction. Magnetoactive thermoplastic elastomers (MATEs) based on A-g-B bottlebrush graft copolymers with different amounts of aggregating side chains filled with different amounts of carbonyl iron microparticles were prepared. The in situ restructuring of magnetic particles in MATEs was shown to significantly alter their viscoelasticity and magnetic response. In particular, the induced anisotropy led to an order-of-magnitude enhancement of the magnetorheological properties of the composites.
Collapse
Affiliation(s)
- Sergei A. Kostrov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia;
| | - Josiah H. Marshall
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Ganguly S, Margel S. Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics. MICROMACHINES 2023; 14:2173. [PMID: 38138344 PMCID: PMC10745923 DOI: 10.3390/mi14122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
5
|
Wu S, Li D, Zhang J, Zhang Y, Zhang Y, Li S, Chen C, Guo S, Li C, Lao Z. Multiple-Droplet Selective Manipulation Enabled by Laser-Textured Hydrophobic Magnetism-Responsive Slanted Micropillar Arrays with an Ultrafast Reconfiguration Rate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2589-2597. [PMID: 36774656 DOI: 10.1021/acs.langmuir.2c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biomimetic structures based on the magnetic response have attracted ever-increasing attention in droplet manipulation. Till now, most methods for droplet manipulation by a magnetic response are only applicable to a single droplet. It is still a challenge to achieve on-demand and precise control of multiple droplets (≥2). In this paper, a strategy for on-demand manipulation of multiple droplets based on magnetism-responsive slanted micropillar arrays (MSMAs) is proposed. The Glaco-modified superhydrophobic surface is the basis of multiple-droplet manipulation. The droplet's motion mode (pinned, unidirectional, and bidirectional) can be readily fine-tuned by changing the volume of droplets and the speed of the magnetic field. The rapid movement of droplets (10-80 mm/s) in the horizontal direction is realized by the unidirectional waves of the micropillar array driven by a specific magnetic field. The bending angle of micropillars can be rapidly and reversibly adjusted from 0 to 90° under the action of a magnetic field. Meanwhile, the liquid-involved light, electric switch, and biomedical detection can be designed by manipulating the droplets on demand. The superiority of MSMAs in multiple-droplet programmable manipulation opens up an avenue for applications in microfluidic and biomedical engineering.
Collapse
Affiliation(s)
- Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Dayu Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shuyi Li
- The Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130012, China
| | - Chao Chen
- College of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sijia Guo
- College of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chuanzong Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zhaoxin Lao
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Xu C, Jiang Z, Zhong T, Chen C, Ren W, Sun T, Fu F. Multi-strand Fibers with Hierarchical Helical Structures Driven by Water or Moisture for Soft Actuators. ACS OMEGA 2023; 8:2243-2252. [PMID: 36687042 PMCID: PMC9850490 DOI: 10.1021/acsomega.2c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Smart actuators that combine excellent mechanical properties and responsive actuating performance like biological muscles have attracted considerable attention. In this study, a water/humidity responsive actuator, consisting of multi-strand carboxyl methyl cellulose (CMC) fibers with helical structures, was prepared using wet-spinning and twisting methods. The results showed that owing to the multi-strand structure, the actuator consisted of one-, two-, three-, and four-strand helical fibers, thus achieving a combination of high strength (∼27 MPa), high toughness (>10.34 MJ/m3), and large load limit (>0.30 N), which enable the actuator to theoretically withstand a weight that is at least 20,000 times its weight. Meanwhile, owing to the excellent moisture-responsive ability of CMC, the actuator, with a 5 g load, could achieve untwisting motion. Additionally, its maximum speed was approximately 2158 ± 233 rpm/m under water stimulation, whereas the recovery speed could reach 804 ± 44 rpm/m. Moreover, this untwisting-recovery reversible process was cyclic, whereas the shape and the actuating speed of the actuator remained stable after more than 150 cycles. The actuator improved the load limit that the fiber could withstand when driving under stimulation, thereby enabling the actuator to lift or move heavy objects like human muscles when executing spontaneously under external stimuli. This result shows considerable potential applications in artificial muscles and biomimetic robots.
Collapse
Affiliation(s)
- Chenxue Xu
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Zhenlin Jiang
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
- Science and Technology on
Advanced Ceramic
Fibers and Composites Laboratory, National
University of Defense Technology, Changsha 410073, P. R.
China
| | - Tiantian Zhong
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Chen Chen
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Wanting Ren
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Tao Sun
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Fanfan Fu
- School
of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| |
Collapse
|
7
|
Kostrov SA, Gorodov VV, Muzafarov AM, Kramarenko EY. Comparative Analysis of Magnetorheological Effect in Soft Isotropic and Anisotropic Magnetoactive Elastomers. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Lin D, Yang F, Gong D, Lin Z, Li R, Qian W, Li C, Jia S, Chen H. Magnetoactive Soft Drivers with Radial-Chain Iron Microparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34935-34941. [PMID: 34279894 DOI: 10.1021/acsami.1c08525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetoactive elastomers (MAEs), one kind of typical novel magnetoactive driver applied in the soft robotic area, have become one of the research hotspots as they can provide biologically friendly driving methods with safe, preprogrammed, and easy-to-implement properties. In this study, novel MAEs embedding soft magnetic iron microparticles with radial chains, which can be molded in one piece, achieve 3D deformation, and co-work between multiple MAEs under single homogeneous stimuli, are proposed. Then, two kinds of novel magnetoactive drivers are established based on the proposed MAEs, which can achieve the synchronous pumping behavior of heart and the extension behavior of muscle under applied homogeneous magnetic fields. The experimental data show that (1) for the pumping behavior, the maximum instantaneous flow rate and total pumping volume can reach 200.1 and 52.3 mL/min, respectively, under 120 BPM applied harmonic magnetic field with 0-300 mT amplitude; (2) the muscle extension behavior can achieve a strain of 0.925 without a loading mass and carry a load of 40 times its own weight with a pronounced dynamic movement. It should be emphasized that the behavior of the proposed magnetoactive drivers can be excited by remote homogeneous magnetic fields, and it has great application potential in biomimetic or bioinspired soft driving systems.
Collapse
Affiliation(s)
- Dezhao Lin
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Fan Yang
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Di Gong
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Zhihong Lin
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Ruihong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Wenbo Qian
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Chenghong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Sheng Jia
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Hongwei Chen
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|