1
|
Chen S, Yang B, Yang D, Qiu X, Zheng D. Multifunctional Fully Biomass-Derived Bilayer Aerogel for Efficient Solar-Driven Desalination and Thermoelectricity Generation. ACS NANO 2025. [PMID: 40401358 DOI: 10.1021/acsnano.5c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Solar-powered interfacial evaporation is an emerging solar energy harvesting technology developed to address the global energy crisis and freshwater shortage. However, non-directionally flowing water inevitably acts as a medium for top-down heat transfer via thermal convection, resulting in a poor evaporation performance. Herein, a fully biomass-based bilayer multifunctional solar evaporator consists of an upper lignin-derived porous carbon (LPC)-embedded chitosan/lignin (CSL) composite aerogel layer featuring vertically small channels and an underlying hydrophilic CS aerogel. The photothermal and evaporation capabilities of the top layer, combined with enhanced capillary forces, drive efficient evaporation. The presence of lignin not only increases the hydrophilicity and saturated water content of the composite aerogel but also serves as a precursor for light-absorbing materials. The bottom large-sized CS aerogel channels inhibit excess water transfer to the upper layer and also reduce water vaporization enthalpy. This unique design allows it to maximize heat from sunlight and localize the generated heat while providing an adequate water supply. Thus, the optimized self-floatable LPC@CSL-5:5@CS bilayered aerogel evaporator achieved a desirable water evaporation rate of 1.717 kg m-2 h-1 and energy efficiency of 90.63% under one solar (1 kW m-2) irradiation. Furthermore, the designed evaporator also presented durable salt tolerance, excellent stability, and recyclability. Notably, the LPC-50 mg@CSL-5:5 aerogel generated a voltage output of 279 mV under 3 sun, which could power an electronic fan. The overall system is both all-biomass and cost-effective, and this multifunctional aerogel evaporator shows great potential for large-scale applications, including solar desalination, wastewater purification, and thermoelectric generation.
Collapse
Affiliation(s)
- Shilin Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road Tianhe District, Guangzhou 510640, China
| | - Beibei Yang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road Tianhe District, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road Tianhe District, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dafeng Zheng
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road Tianhe District, Guangzhou 510640, China
| |
Collapse
|
2
|
Liu Y, Li D, Tian G, Xu C, Chen X, Huang J, Guo Z. FeOOH Quantum Dots Assembled MXene-Decorated 3D Photothermal Evaporator for Synergy Application in Solar Evaporation and Fenton Degradation. SMALL METHODS 2025; 9:e2401541. [PMID: 39523737 DOI: 10.1002/smtd.202401541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously. MXene composites allow the solar evaporator with excellent photothermal conversion performance, the hydrophilic chitosan hydrogel coated interconnecting skeleton structures of sponge serve as the mass transfer and water transport channels. The Fenton-catalytic FQDs anchored on the MXene sheets surface accept the photo-generated electrons of MXene sheets to induce the organic pollutant photo-Fenton degradation reaction under sunlight irradiation. The resulting evaporator possesses both excellent water evaporation rate of 2.54 kg m-2 h-1 and high degradation efficiency (99.24% for methylene blue), coupled with durable salt-resisting performance during long-term seawater desalination (20 wt.% NaCl). This work provides a simple and feasible strategy for designing multifunctional solar evaporators to meet the potential application scenarios in practice.
Collapse
Affiliation(s)
- Yifan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Deke Li
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou, 730050, P. R. China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Hou L, Li S, Qi Y, Liu J, Cui Z, Liu X, Zhang Y, Wang N, Zhao Y. Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications. ACS NANO 2025; 19:9636-9683. [PMID: 40056136 DOI: 10.1021/acsnano.4c16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Solar-driven interfacial evaporation (SDIE) has emerged as a promising technology for addressing global water scarcity by utilizing solar-thermal conversion and evaporation at the air/material/water interface. The exceptional performance of these systems has attracted significant interest; it is imperative to establish rigorous and scientific standards for evaluating effectiveness, optimizing system design, and ensuring efficient practical applications. In this Review, we propose consensus criteria for accurately assessing system performance and guiding future advancements. We then explore the fundamental mechanisms driving system synergy, emphasizing how material compositions, microscopic hierarchical material structures, and macroscopic three-dimensional spatial architecture designs enhance solar absorption and photothermal conversion; balance heat confinement with water pathway optimization; manage salt resistance; and regulate enthalpy during vaporization. These matched coordination strategies are crucial for maximizing the target SDIE efficiency. Additionally, we investigate the practical applications of SDIE technologies, focusing on cutting-edge progress and versatile water purification, combined with atmospheric water harvesting, salt collection, electric generation, and photothermal deicing. Finally, we highlight the challenges and exciting opportunities for advancing research, emphasizing future efforts to integrate fundamental principles, system-level collaboration, and application-driven approaches to boost sustainable and highly efficient water and energy technologies. By linking system performance evaluation with optimization strategies for influencing factors, we offer a comprehensive overview of the field and a future outlook that promotes highly efficient clean water production and synergistic applications.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Shuai Li
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Yingqun Qi
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jingchong Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xiaofei Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Ying Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Yu M, Du S, Zhu B, Zhu L, Yang J. All-Natural Photothermal Hydrogel for Efficient Desalination and Heavy Metal Enrichment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5664-5675. [PMID: 39964678 DOI: 10.1021/acs.langmuir.5c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Solar-driven interfacial evaporation technology presents a promising approach for large-scale, sustainable water resource utilization, with significant potential in seawater desalination and wastewater treatment. However, the simultaneous removal of waterborne pollutants during solar interfacial evaporation remains a significant challenge. This study introduces an all-natural photothermal hydrogel composed of chitosan, cellulose nanofibers, and carbonized spent bleaching earth (C@SBE) for efficient seawater desalination and heavy metal remediation. The hydrogel performance was enhanced by optimizing its three-dimensional porous structure and incorporating C@SBE to improve photothermal conversion efficiency and adsorption capacity. Under one-sun irradiation, the hydrogel achieved an impressive evaporation rate of 2.17 kg m-2 h-1 with an evaporation efficiency of 90.8%, exhibiting excellent salt resistance and long-term operational stability. Furthermore, the hydrogel demonstrated a maximum Cu2+ adsorption capacity of 145.3 mg/g, with adsorption kinetics following the pseudo-second-order model and isotherms aligning with the Langmuir model. The adsorption mechanism involved synergistic effects of chitosan amino chelation, C@SBE electrostatic interactions, and ion exchange. Soil remediation experiments further revealed that the hydrogel effectively reduced Cu2+ concentrations in contaminated soil from 500 to 45.6 mg/kg under one-sun irradiation, while simultaneously promoting healthy wheat seed growth. This study highlights a green, efficient, and sustainable multifunctional photothermal hydrogel, offering a novel technological platform and theoretical foundation for solar-driven water purification and environmental remediation.
Collapse
Affiliation(s)
- Miao Yu
- Jilin Provincial Key Laboratory for Numerical Simulation, Jilin Normal University, Siping 136000, China
| | - Shichao Du
- Jilin Provincial Key Laboratory for Numerical Simulation, Jilin Normal University, Siping 136000, China
| | - Bing Zhu
- Jilin Provincial Key Laboratory for Numerical Simulation, Jilin Normal University, Siping 136000, China
| | - Lin Zhu
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jin Yang
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
5
|
Lv F, Miao J, Wang Z, Hu J, Orejon D. Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410290. [PMID: 39690819 DOI: 10.1002/adma.202410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited. This 3D superhydrophilic graphene oxide solar evaporator design ensures stable water supply by the enhanced self-driving liquid capillarity and absorption at the evaporation interface as well as efficient vapor diffusion. Meanwhile, the polyanionic electrolyte functionalization implemented via layer-by-layer static deposition of polystyrene sodium sulfonate effectively regulates/minimizes the flux of salt ions by exploiting the Donnan equilibrium effect, which eventually hinders local salt crystallization during long-term operation. Stable evaporation rates in line with the literature of up to 1.68 kg m-2 h-1 are achieved for up to 10 days in brine (15‰ salinity) and for up to 3 days in seawater from Hangzhou Bay in the East China Sea (9‰ salinity); while, maintaining evaporation efficiencies of ≈90%. This work demonstrates the excellent benefits of polyanionic electrolyte functionalization as salt resistance strategy for the development of high-performance solar powered seawater desalination technology and others.
Collapse
Affiliation(s)
- Fengyong Lv
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jie Miao
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Wang
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
6
|
Eskafi A, De Finnda C, Garcia CA, Mi B. Mineral Scaling in 3D Interfacial Solar Evaporators─A Challenge for Brine Treatment and Lithium Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:892-901. [PMID: 39743850 PMCID: PMC11740997 DOI: 10.1021/acs.est.4c08151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked. Therefore, in this study, we thoroughly examined the effects of two common cations (calcium and magnesium) on the long-term solar evaporation performance of a 3D graphene oxide stalk. The 3D stalk can achieve an evaporation flux as high as 17.8 kg m-2 h-1 under one-sun illumination, and accumulation of NaCl on the stalk surface has no impact. However, the presence of CaCl2 and MgCl2 significantly reduces the evaporative flux even in solutions lacking scale-forming anions. A close examination of scale formation during long-term evaporation experiments revealed that CaCl2 and MgCl2 tend to precipitate out within the stalk, thus blocking water transport through the stalk and significantly dropping the evaporation rates. These findings imply that research attention is needed to modify and optimize the internal water transport channels for 3D evaporators. Additionally, we emphasize the importance of testing realistic mixtures─including prominent divalent cations─ and testing long-term operations in interfacial solar evaporation research and investigating approaches to mitigate the negative impacts of divalent cations.
Collapse
Affiliation(s)
- Aydin
F. Eskafi
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Casey De Finnda
- Department
of Civil & Environmental Engineering, UC Davis, Davis, California 95616, United States
| | - Christopher A. Garcia
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Baoxia Mi
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Liang Y, Wang D, Yu H, Wu X, Lu Y, Yang X, Owens G, Xu H. Recent innovations in 3D solar evaporators and their functionalities. Sci Bull (Beijing) 2024; 69:3590-3617. [PMID: 39353816 DOI: 10.1016/j.scib.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Interfacial solar evaporation (ISE) has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater. While ISE was originally identified and developed during studies of simple double-layered two-dimensional (2D) evaporators, observed limitations in evaporation rate and functionality soon led to the development of three-dimensional (3D) evaporators, which is now recognized as one of the most pivotal milestones in the research field. 3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators. Furthermore, 3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures. This review summarizes recent advances in 3D evaporators, focusing on rational design, fabrication and energy nexus of 3D evaporators, and the derivative functions for improving solar evaporation performance and exploring novel applications. Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.
Collapse
Affiliation(s)
- Yunzheng Liang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Deyu Wang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Huimin Yu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Gary Owens
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
8
|
Li X, Jiang L, Li X, Qu L, Zhao Y, Wang J, Yi P, Li T, Zhang X, Li J. Bifunctional Janus Membranes for Multicomponent Contaminated Seawater Separation and Recovery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60890-60901. [PMID: 39207296 DOI: 10.1021/acsami.4c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solar-driven interface desalination has emerged as a promising strategy to address the global freshwater shortage crisis. However, the separation and recovery of multicomponent oil-contaminated seawater remain a key challenge. This study reports a novel high-strength Janus photothermal membrane with a unique reverse wettability design. On one side, the membrane has hydrophilic and oleophobic properties, while on the other, it has hydrophobic and oleophilic characteristics. The Janus membrane demonstrates dual functionality: solar desalination and oil-water separation. This dual functionality enables efficient separation and recovery of four components from contaminated seawater: purified water, salt crystals, light oil, and heavy oil. As a result, the Janus membrane achieves an evaporation rate of 2.06 kg m-2 h-1 under 1.0 sun. The ion (Na+, K+, Ca2+, and Mg2+) removal rate approaches 100% with nearly complete recovery of salt crystals. Furthermore, various types of oils can be accurately separated, with separation efficiency approaching 100%. An integrated separation device successfully separates and recovers the four components. This research presents significant potential for efficient separation and recovery of complex components in oil-contaminated seawater.
Collapse
Affiliation(s)
- Xibiao Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, PR China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, PR China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, PR China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, PR China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Peng Yi
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Taoyong Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangyu Zhang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiafang Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
9
|
Chen J, Wang X, Wang B, Wu T, Zhang L, Zhang K, Fang G, Wang Y, Zhao Y, Yang G. Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403221. [PMID: 39012064 DOI: 10.1002/smll.202403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale. In this review, the interrelationship between efficient interfacial evaporator and bio-based hydrogel is first presented. Then, special attention is paid on the inherent molecular characteristics of the biopolymer related to the up-to-date studies of promising biopolymers derived interfacial evaporator with the objective to showcase the unique superiority of biopolymer. In addition, the applications of the bio-based hydrogels are highlighted concerning the aspects including water desalination, water decontamination atmospheric water harvesting, energy storage and conversion. Finally, the challenges and future perspectives are given to unveil the bottleneck of the biobased hydrogel derived SIES in sustainable water and other energy storage applications.
Collapse
Affiliation(s)
- Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaofa Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Yueying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
10
|
Wang X, Ma Z, Xu S, Zheng D, Bai B, Zong S. Hofmeister effect induced water activation of hydrogel and its applications for the accelerated solar evaporation in brine. WATER RESEARCH 2024; 268:122709. [PMID: 39489126 DOI: 10.1016/j.watres.2024.122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Solar-driven desalination has emerged as a promising approach to address water scarcity caused by the decreasing supply of freshwater. Reducing the enthalpy of water vaporization is crucial for enhancing the efficiency of solar-powered desalination. In this study, inspired by the Hofmeister effect, we developed a highly hydratable network hydrogel evaporator to achieve a superior evaporation rate in brine compared with pure water. The evaporator comprised a carbonized layer as the photothermal layer and a chitosan aerogel hydrogel as the hydratable matrix. The hydrogel exhibited a dramatically reduced vaporization enthalpy of 1397 J/g and a significant evaporation rate of 2.38 kg m-2 h-1 when exposed to seawater. These results demonstrated the superior performance of hydrogel compared with pure water (1.91 kg m-2 h-1). Excellent evaporation rates and outstanding salt resistance ensured efficient coordination for practical long-term desalination applications. Further investigations revealed that the remarkable evaporation performance of the carbonized chitosan (CCS) hydrogel in brine environments was attributed to its hydrability, which was regulated by Cl-. According to the Hofmeister effect, Cl- accelerated the hydration chemistry in CCS and suppressed the associated crystallinity, which resulted in a lower enthalpy of vaporisation owing to a higher amount of intermediate water. With its superior evaporation performance in brine and comprehensive theoretical simulation analysis, this study presents an achievable and economical strategy for simultaneously addressing the water and energy crises.
Collapse
Affiliation(s)
- Xuechun Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Zhiye Ma
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Dan Zheng
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, 232001, PR China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China.
| | - Shichao Zong
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
11
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
12
|
Zhang D, Zhang S, Liang Q, Guan M, Zhang T, Chen S, Wang H. A Tent-Inspired Portable Solar-Driven Water Purification Device for Wilderness Explorers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311731. [PMID: 38321844 DOI: 10.1002/smll.202311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shengming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengyao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
13
|
Zhou C, Mei Q, Huang L, Mao T, Li S, Wang Z, Wan H, Gu H, Han K. Flexible Janus Black Silicon Photothermal Conversion Membranes for Highly Efficient Solar-Driven Interfacial Water Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26153-26166. [PMID: 38718343 DOI: 10.1021/acsami.4c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Photothermal conversion materials are critical in the development of solar-driven interfacial evaporation techniques; however, achieving a high energy conversion efficiency remains challenging owing to the high cost and instability of light-absorbing materials, in addition to the difficulties of simultaneously improving light absorption while suppressing heat loss. A black silicon (Si) powder with a porous structure was prepared by chemical etching of a low-cost commercial micron-sized Al-Si alloy, and a flexible Janus black Si photothermal conversion membrane was constructed. The partially broken spherical particles and porous structure obtained after etching enhanced the refraction of light from the Si powder, imparting the prepared membrane with an average light absorption rate of 95.95% over the solar spectrum. Evaporation from the membrane increased the intermediate water content and reduced the equivalent evaporation enthalpy. The thermal conduction loss was inhibited through a one-dimensional water transport structure, and the membrane achieved a water evaporation rate of 2.17 kg m-2 h-1 and a photothermal efficiency of 94.95% under 1 sun illumination. Benefiting from the broadband absorption and high photothermal efficiency of black Si powder, surface modification of hydrophobic polydimethylsiloxane, and directional salt-out structure design, the evaporation rate of the Janus black Si membrane-based system in a 10% NaCl solution was maintained >2.10 kg m-2 h-1 after 7 days of continuous evaporation cycles. The removal rate of metal ions from simulated seawater and from practical wastewater containing complex heavy metals reached >99.9%, indicating the promising potential of black Si membrane for application in solar-driven interfacial water purification.
Collapse
Affiliation(s)
- Chuanling Zhou
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qiuyu Mei
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Limingming Huang
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tingting Mao
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shuangfu Li
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhian Wang
- China CEC Engineering Corporation, Changsha 410116, P. R. China
| | - Hua Wan
- China CEC Engineering Corporation, Changsha 410116, P. R. China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Kai Han
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
14
|
Wang P, Wang X, Wang X, Lin X, Qiu X. Biomass-Based Antibacterial Hybrid Engineering Hydrogel for Efficient Solar Steam Generation. CHEM & BIO ENGINEERING 2024; 1:252-263. [PMID: 39974204 PMCID: PMC11835181 DOI: 10.1021/cbe.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/21/2025]
Abstract
Interfacial solar steam generation is recognized as a promising solution to alleviate the scarcity of freshwater resources owing to its utilization of clean solar energy alongside its high efficiency and minimal heat loss. Nonetheless, the utilization of solar energy for water evaporation encounters challenges, primarily manifested in low evaporation rates and efficiency. Herein, we introduced an approach involving the development of a biomass-based hybrid engineering hydrogel evaporator, denoted as CLC (chitosan and lignosulfonate sodium hybrid hydrogel with a carbon nanotube). The construction of this evaporator involves the straightforward blending of lignosulfonate sodium (LS) and marine polysaccharide biomass chitosan (CS) with carbon nanotubes (CNT) serving as the photothermal materials. The interaction between the sulfonic group of LS and the amino group of CS with water molecules, facilitated by hydrogen bonding and electrostatic interactions, reduces the evaporation enthalpy of water, thereby lowering the energy demand for evaporation. Furthermore, the incorporation of LS reduces the thermal conductivity of the as-prepared hydrogel and promotes photothermal management to mitigate heat loss. The CLC hydrogel demonstrates an evaporation rate of 2.48 kg m-2 h-1 and energy efficiency of 90% under one sun illumination. Moreover, the CLC hydrogel exhibits excellent antibacterial properties (98.4%), ensuring that desalinated water meets drinking standards. This high efficiency and eco-friendly biomass hydrogel with antibiological pollution characteristics and purification abilities holds great potential for widespread application of long-term seawater desalination.
Collapse
Affiliation(s)
- Ping Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianjiao Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofei Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuliang Lin
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqing Qiu
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Xue Y, Lin C, Zhong J, Huang D, Persson C. Group-IIIA element doped BaSnS 2 as a high efficiency absorber for intermediate band solar cell from a first-principles insight. Phys Chem Chem Phys 2024; 26:8380-8389. [PMID: 38404232 DOI: 10.1039/d3cp05824g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The quest for high-performance solar cell absorbers has garnered significant attention in the field of photovoltaic research in recent years. To overcome the Shockley-Queisser (SQ) limit of ∼31% for single junction solar cell and realize higher power conversion efficiency, the concept of an intermediate band solar cell (IBSC) has been proposed. This involves the incorporation of an intermediate band (IB) to assist the three band-edge absorptions within the single absorber layer. BaSnS2 has an appropriate width of its forbidden gap in order to host an IB. In this work, doping of BaSnS2 was studied based on hybrid functional calculations. The results demonstrated that isolated and half-filled IBs were generated with suitable energy states in the band gap region after group-IIIA element (i.e., Al, Ga, and In) doping at Sn site. The theoretical efficiencies under one sun illumination of 39.0%, 44.3%, and 39.7% were obtained for 25% doping concentration of Al, Ga, and In, respectively; thus, larger than the single-junction SQ-limit. Furthermore, the dopants have lower formation energies when substituting the Sn site compare to occupying the Ba and S sites, and that helps realizing a proper IB with three band-edge absorptions. Therefore, group-IIIA element doped BaSnS2 is proposed as a high-efficiency absorber for IBSC.
Collapse
Affiliation(s)
- Yang Xue
- Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| | - Changqing Lin
- Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| | - Jiancheng Zhong
- Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| | - Dan Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Clas Persson
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
- Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo, NO-0316, Oslo, Norway
| |
Collapse
|
16
|
Li J, Jing Y, Qiao M, Yang W, Sun H, Jiao R, Zhang J, Li A. Vertical porous aerogel based on polypyrrole and bimetallic modified β-cyclodextrin polymer-chitosan for efficient solar evaporation. Int J Biol Macromol 2024; 258:128987. [PMID: 38158060 DOI: 10.1016/j.ijbiomac.2023.128987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Solar-driven interfacial evaporation (SDIE) stands out as a prospective technology for freshwater production, playing a significant role in mitigating global water scarcity. Herein, a cyclodextrin polymer/chitosan composite aerogel (PPy-La/Al@CDP-CS) with vertically aligned channels was prepared as a solar evaporator for efficient solar steam generation. The vertically aligned pore structure, achieved through directional freezing assisted by liquid nitrogen, not only improves water transport during evaporation but also enhances light absorption through multiple reflections of sunlight within the pores. The polypyrrole particles sprayed on the surface of the aerogel acted as a light-absorbing layer, resulting in an impressive absorbance of 98.15 % under wetting conditions. The aerogel has an evaporation rate of 1.85 kg m-2 h-1 under 1 kW m-2 irradiation. Notably, the vertical pore structure of the aerogel allows it to exhibit excellent evaporation performance and salt resistance even in highly concentrated salt solutions. Furthermore, this aerogel is an excellent solar-driven interfacial evaporator for purifying seawater and fluoride-containing wastewater. This photothermal aerogel has the advantages of excellent performance, low cost, and environmental friendliness, and thus this work provides a new approach to the design and fabrication of solar photothermal materials for water treatment.
Collapse
Affiliation(s)
- Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| | - Yanju Jing
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Min Qiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Wenzhe Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Rui Jiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Junping Zhang
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
17
|
Li J, Jing Y, Qiao M, Yan L, Long Y, Liu Z, Sun H, Zhu Z, Liang W, Li A. 3D porous β-cyclodextrin grafted graphene oxide/sodium alginate superhydrophilic natural polysaccharide-based aerogel for solar steam generation. Int J Biol Macromol 2023; 253:127338. [PMID: 37820906 DOI: 10.1016/j.ijbiomac.2023.127338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/29/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Solar steam generation (SSG) emerges as a paramount technology for efficient and sustainable desalination and wastewater purification. The innovative development of porous aerogel materials for solar steam generation heralds a new era in photothermal materials. In this study, a category of β-cyclodextrin-grafted graphene oxide/sodium anionic polysaccharide alginate composite aerogels (named GO-CD/SA) with solar steam generation behavior and wastewater purification properties is developed. GO-CD/SA demonstrates remarkable properties, including an impressive solar absorption efficiency of approximately 97.4 %, a low thermal conductivity of just 0.124 W m-1 K-1 in a wetted state, and exceptional superhydrophilicity. These attributes collectively contribute to GO-CD/SA achieving an evaporation rate of 1.79 kg m-2 h-1 when utilized with pure water. Furthermore, GO-CD/SA features an abundant three-dimensional porous structure (88.07 % porosity) and superhydrophilic properties that promote the rapid reflux of salt solution between the pore channels. This, in turn, enables excellent salt resistance, with no noticeable salt crystals precipitating during continuous evaporation in 20 % high concentration brine for 6 h. GO-CD/SA also demonstrates outstanding purification capabilities for organic dye wastewater and heavy metal ion wastewater. Therefore, this work combines the advantages of salt tolerance and wastewater treatment, paving the way for the exploration of natural polysaccharide-based photothermal materials.
Collapse
Affiliation(s)
- Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| | - Yanju Jing
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Min Qiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Lijuan Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yong Long
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zihao Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
18
|
Li Z, Yu L, Ma H, Chen J, Meng J, Wang Y, Liu Y, Song Q, Dong Z, Miao M, Li B, Zhi C. An efficient interfacial solar evaporator featuring a hierarchical porous structure entirely derived from waste cotton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166212. [PMID: 37567279 DOI: 10.1016/j.scitotenv.2023.166212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Interfacial solar evaporators are widely used to purify water. However, photothermal materials commonly constituting most interfacial solar evaporators remain expensive; additionally, the inherent structure of the evaporators limits their performance. Furthermore, the large amount of waste cotton produced by the textile industry is an environmental threat. To address these issues, we propose an interfacial solar evaporator, H-CA-CS, with a hierarchical porous structure. This evaporator is made entirely of waste cotton and uses carbon microspheres (CMS) and cellulose aerogel (CA) as photothermal and substrate materials, respectively. Additionally, its photothermal layer (CS layer) has large pores and a high porosity, which promote light absorption and timely vapor escape. In contrast, the water transport layer (CA layer) has small pores, providing a robust capillary effect for water transport. Combined with the outstanding light absorption properties of CMS, H-CA-CS exhibited superior overall performance. We found that H-CA-CS has an excellent evaporation rate (1.68 kg m-2 h-1) and an efficiency of 90.6 % under one solar illumination (1 kW m-2), which are superior to those of many waste-based solar evaporators. Moreover, H-CA-CS maintained a mean evaporation rate of 1.61 kg m-2 h-1, ensuring sustainable evaporation performance under long-term scenarios. Additionally, H-CA-CS can be used to purify seawater and various types of wastewater with removal efficiencies exceeding 99 %. In conclusion, this study proposes a method for efficiently using waste cotton to purify water and provides novel ideas for the high-value use of other waste fibers to further mitigate ongoing environmental degradation.
Collapse
Affiliation(s)
- Zhenzhen Li
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Lingjie Yu
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Haodong Ma
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Jianglong Chen
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Jiaguang Meng
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Yongzhen Wang
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Yaming Liu
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Qingwen Song
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Zijing Dong
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Menghe Miao
- Department of Mechanical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Bo Li
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Chao Zhi
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| |
Collapse
|
19
|
Yang Y, He Y, Yang S, Dong D, Zhang J, Ding J, Zhang J, Chen YM. Tough, durable and saline-tolerant CNT@Gel-nacre nanocomposite for interfacial solar steam generation. J Colloid Interface Sci 2023; 650:182-192. [PMID: 37402324 DOI: 10.1016/j.jcis.2023.06.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Solar-driven interfacial evaporation materials based on nanocomposite hydrogels have emerged for seawater desalination. Nevertheless, the issue of mechanical degradation derived from the swelling behavior of hydrogel is often seriously underestimated, which strongly hinders the practical application for long-term solar vapor generation, especially in high-salinity brine. Herein, a novel CNT@Gel-nacre with enhanced capillary pumping design has been proposed and fabricated for tough and durable solar-driven evaporator through uniformly doping carbon nanotubes (CNTs) into the tough gel-nacre. Particularly, the salting out process gives rise to volume shrinkage and phase separation of polymer chains, endowing the nanocomposite hydrogel with significantly enhanced mechanical properties while simultaneously rendering more compact microchannels for water transportation, boosting the capillary pumping. Based on this unique design, the gel-nacre nanocomposite exhibits outstanding mechanical performances (13.41 MPa strength, 55.60 MJ m-3 toughness), especially mechanical durability in high salinity brine for long-term service. Furthermore, excellent water evaporation rate of 1.31 kg m-2h-1 and conversion efficiency of 93.5% in 3.5 wt% sodium chloride solution, as well as stable cycling without salt accumulation can be achieved. This work demonstrates an effective strategy for achieving solar-driven evaporator with superior mechanical properties and durability even in brine environment, showing huge potentials in long-term seawater desalination.
Collapse
Affiliation(s)
- Yang Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yuan He
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Sihui Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Diandian Dong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingjing Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jiansen Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingwen Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
20
|
Hou L, Liu X, Ge X, Hu R, Cui Z, Wang N, Zhao Y. Designing of anisotropic gradient surfaces for directional liquid transport: Fundamentals, construction, and applications. Innovation (N Y) 2023; 4:100508. [PMID: 37753526 PMCID: PMC10518492 DOI: 10.1016/j.xinn.2023.100508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Many biological surfaces are capable of transporting liquids in a directional manner without energy consumption. Inspired by nature, constructing asymmetric gradient surfaces to achieve desired droplet transport, such as a liquid diode, brings an incredibly valuable and promising area of research with a wide range of applications. Enabled by advances in nanotechnology and manufacturing techniques, biomimetics has emerged as a promising avenue for engineering various types of anisotropic material system. Over the past few decades, this approach has yielded significant progress in both fundamental understanding and practical applications. Theoretical studies revealed that the heterogeneous composition and topography mainly govern the wetting mechanisms and dynamics behavior of droplets, including the interdisciplinary aspects of materials, chemistry, and physics. In this review, we provide a concise overview of various biological surfaces that exhibit anisotropic droplet transport. We discussed the theoretical foundations and mechanisms of droplet motion on designed surfaces and reviewed recent research advances in droplet directional transport on designed plane surfaces and Janus membranes. Such liquid-diode materials yield diverse promising applications, involving droplet collection, liquid separation and delivery, functional textiles, and biomedical applications. We also discuss the recent challenges and ongoing approaches to enhance the functionality and application performance of anisotropic materials.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofei Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xinran Ge
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Rongjun Hu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
21
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Zhou L, Han J, Xiao J, Yang X, Chen S. Microfluidic-Assisted Self-Assembly of 2D Nanosheets toward in situ Generation of Robust Nanofiber Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301310. [PMID: 37080949 DOI: 10.1002/smll.202301310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Methods allow the enhancement of nanofibers via self-assembly are potentially important for new disciplines with many advantages, including multi-anchor interaction, intrinsic mechanical properties and versatility. Herein, a microfluidic-assisted self-assembly process to construct hydroxyl functionalized boron nitride nanosheets (OH-BNNS)/graphene oxide (GO)/thermoplastic polyurethane (TPU) composite nanofiber film, in which stable and precisely controlled self-assembly is fulfilled by the confined ultra-small-volume chip is demonstrated. Multiple fine structural analyses alongside with the density-functional theory (DFT) calculations are implemented to confirm the synergistic effect of noncovalent interactions (hydrogen bonding interaction, π - π stacking interaction, and van der Waals attraction) plays a critical role in the robust micro-structure and a massive 700% enhancement of mechanical strength via adding only 0.3 wt% OH-BNNS and GO. Importantly, profiled from broadband optical absorption ability, robust mechanical properties and outstanding flexibility, the self-assembled 3D OH-BNNS/GO/TPU nanofiber film reveals an adorable evaporation rate of 4.04 kg m-2 h-1 under one sun illumination with stable energy transfer efficiency (93.2%) by accompanying hydrogen bonding interaction. This microfluidic-assisted self-assembly strategy will provide a constructive entry point for the rational design of nanofibers and beyond.
Collapse
Affiliation(s)
- Liangliang Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingtao Han
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jijun Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoning Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
23
|
Ma J, Xu Y, Xu Y, An L, Wang W. Ultrathin Water Layer Conservation by "Nano-forest" in a Three-Dimensional Interface Regulates Energy Flow to Boost Solar Evaporation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10652-10661. [PMID: 37458075 DOI: 10.1021/acs.est.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Solar-driven interfacial evaporation technology utilizes materials to form a thin layer on the water's surface, absorbs sunlight on this layer, completes the light-to-heat conversion, heats up the water, and vaporizes it. This greatly reduces energy loss to bulk water and greatly improves the evaporation rate for producing clean water. Additionally, three-dimensional (3D) evaporators are increasingly being applied in this field, and the cold surface generated by the rapid evaporation in the 3D evaporator can utilize environmental heat to achieve a net energy gain for the system. Both strategies improve the evaporation rate of the system, but 3D materials typically have high water contents and cannot avoid energy flow into non-evaporated water. To address this, we introduce the advantages of interfacial evaporation into 3D evaporation by constructing an evaporator with a highly conductive copper core skeleton and an outer layer of ultrathin water and by reasonably constructing interconnected evaporation frameworks. Investigating and optimizing the mutual influence of the ultrathin water layer on the framework, an evaporator with 40 pores per inch (ppi) can reach a maximum of 24.4 kg·m-2 h-1, indicating that 3D interfacial evaporators with ultrathin water layers concentrate energy flow to stimulate high evaporation rates. This strategy will promote the development of photothermal evaporation technology.
Collapse
Affiliation(s)
- Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yunjie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
Wang B, Zhang H, He N, Wang H, Jiang B, Tang D, Li L. Mangrove root-inspired evaporator enables high-rate salt-resistant solar desalination. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
25
|
Huang X, Li L, Zhao X, Zhang J. Highly Salt-Resistant interfacial solar evaporators based on Melamine@Silicone nanoparticles for stable Long-Term desalination and water harvesting. J Colloid Interface Sci 2023; 646:141-149. [PMID: 37187047 DOI: 10.1016/j.jcis.2023.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Interfacial solar-driven evaporation (ISE) is one of the most promising solutions for collecting fresh water, however, poor salt-resistance severely limits the long-term stability of solar evaporators. Here, highly salt-resistant solar evaporators for stable long-term desalination and water harvesting were fabricated by depositing silicone nanoparticles onto melamine sponge, and then modifying the hybrid sponge sequentially with polypyrrole and Au nanoparticles. The solar evaporators have a superhydrophilic hull for water transport and solar desalination, and a superhydrophobic nucleus for reducing heat loss. Spontaneous rapid salt exchange and reduction in salt concentration gradient were achieved due to ultrafast water transport and replenishment in the superhydrophilic hull with a hierachical micro-/nanostructure, which effectively prevents salt deposition during ISE. Consequently, the solar evaporators have long-term stable evaporation performance of 1.65 kg m-2h-1 for 3.5 wt% NaCl solution under 1 sun illumination. Moreover, 12.87 kg m-2 fresh water was collected during consecutive 10 h ISE of 20 wt% brine under 1 sun without any salt precipitation. We believe that this strategy will shed a new light on the design of long-term stable solar evaporators for fresh water harvesting.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Lingxiao Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
26
|
Guo XJ, Wang X, Xue CH, Liu BY, Wu YG, Zhang D, Deng FQ, An QF, Pu YP. Salt-blocking three-dimensional Janus evaporator with superwettability gradient for efficient and stable solar desalination. J Colloid Interface Sci 2023; 644:157-166. [PMID: 37105039 DOI: 10.1016/j.jcis.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Solar interfacial steam power generation is a prospective method for seawater desalination. In this work, a salt-blocking three-dimensional (3D) Janus evaporator with a superhydrophobic to superhydrophilic gradient was fabricated by spraying a composite dispersion of multi-walled carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) onto the top side of a polyurethane (PU) foam and polyvinyl alcohol (PVA) solution onto the bottom side. The CNTs/PDMS composite dispersion with nanostructured CNTs and low surface energy PDMS combined with the porous structure of the PU foam rendered the top side superhydrophobic. Therefore, a layer suitable for photothermal conversion was obtained. The hydrophilic PVA combined with the porous structure of the foam rendered the bottom side superhydrophilic, facilitating water absorption and transportation. The asymmetric wettability gradient of the CNTs/PDMS-PU-PVA as a 3D evaporator caused the evaporation rate and transportation speed of water to reach a balance, and the salt was quickly dissolved at the superhydrophilic interface. This 3D salt-resistant Janus evaporator achieved an evaporation rate of 2.26 kg m-2 h-1 under 1 kW m-2 illumination.
Collapse
Affiliation(s)
- Xiao-Jing Guo
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xing Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao-Hua Xue
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Bing-Ying Liu
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yong-Gang Wu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Duo Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fu-Quan Deng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiu-Feng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yong-Ping Pu
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
27
|
3D printing double-layer hydrogel evaporator with surface structures for efficient solar steam generation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhao X, Dong J, Yu X, Liu L, Liu J, Pan J. Bioinspired photothermal polyaniline composite polyurethane sponge: interlayer engineering for high-concentration seawater desalination. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Gui Z, Xiang D. Hierarchically designed evaporators with dual-layered hydrogel/aerogel structure for efficient solar water evaporation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Cheng X, Kong Y, Gao Y, Dan H, Wei Y, Yin W, Gao B, Yue Q. One-step construction of P(AM-DMDAAC)/GO aerogel evaporator with Janus wettability for stable solar-driven desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Choi YW, Yoo SS, Lee JH, Moon MW, Yoo PJ. Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Hanif Z, Tariq MZ, Khan ZA, La M, Choi D, Park SJ. Polypyrrole-coated nanocellulose for solar steam generation: A multi-surface photothermal ink with antibacterial and antifouling properties. Carbohydr Polym 2022; 292:119701. [PMID: 35725185 DOI: 10.1016/j.carbpol.2022.119701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Solar energy-based steam generation holds immense potential to tackle the problem of 1.1 billion people lacking access to freshwater and 2.7 billion experiencing freshwater scarcity at least one month a year. Efficient, portable, and universal photothermal materials are required for popularity of solar-driven evaporation systems. Herein, a facile one-pot process based on solution-processed vapor phase polymerization is adopted to fabricate polypyrrole-coated cellulose nanocrystals (CNC-PPy). The CNC-PPy dispersed in water is used as an ink (CNC-PPy ink) to create photothermal layers. The developed ink is readily laminated on diverse substrates utilizing a common paintbrush that firmly attached without any delamination after drying. The optimized cellulose membrane (6 coating cycles) presents an excellent evaporation rate of 1.96 Kg m-2 h-1 with corresponding light-to-vapor efficiency of 88.92 % at 1 sun. In addition, the CNC-PPy display excellent antibacterial and antifouling properties in powder and laminated forms against E. coli and S. aureus.
Collapse
Affiliation(s)
- Zahid Hanif
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea
| | - Muhammad Zakria Tariq
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, P.O. Box 50834, Gimhae, Gyeongnam, Republic of Korea
| | - Moonwoo La
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, P.O. Box 17104, Yongin, Gyeonggi, Republic of Korea.
| | - Sung Jea Park
- School of Mechanical Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, P.O. Box 31253, Cheonan, Chungnam, Republic of Korea.
| |
Collapse
|
33
|
Yang E, Wei N, Li M, Xu R, Sui Y, Kong M, Ran X, Cui H. Three-Dimensional Artificial Transpiration Structure Based on 1T/2H-MoS 2/Activated Carbon Fiber Cloth for Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29788-29796. [PMID: 35732600 DOI: 10.1021/acsami.2c05306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of solar steam generation is an effective strategy to mitigate clean water shortages. However, achieving further improvements in conversion efficiency and stability remains a challenge. Here, 1T/2H-MoS2 nanosheets were uniformly assembled on activated carbon fiber cloth (A-CFC) through a facial hydrothermal method, and a three-dimensional (3D)-artificial transpiration device (ATD) was prepared using the plant transpiration process. The combination of activated carbon fiber cloth and 1T/2H phase MoS2 exhibits high light absorption (∼97.5%), excellent mechanical stability, large evaporation area, and easy escape of vapor. Additionally, the 3D hollow cone of the MoS2/carbon fiber cloth can effectively reduce radiative and convective energy loss and then achieve the enhancement of energy collection from the environment. An outstanding evaporation rate of 1.61 kg·m-2·h-1 with an optimum conversion efficiency of 97% under one sun is reached. Based on the facile fabrication, excellent stability, and high solar conversion efficiency, this nature-inspired design of 3D 1T/2H-MoS2/A-CFC is expected to facilitate large-scale applications for seawater purification and desalination.
Collapse
Affiliation(s)
- Enquan Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Na Wei
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Menghan Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruiqi Xu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yiling Sui
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mengyao Kong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xuchao Ran
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
34
|
Li W, Feng W, Wu S, Wang W, Yu D. Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Shen M, Zhao X, Han L, Jin N, Liu S, Jia T, Chen Z, Zhao X. Developing Flexible Quinacridone-Derivatives-Based Photothermal Evaporaters for Solar Steam and Thermoelectric Power Generation. Chemistry 2022; 28:e202104137. [PMID: 35102622 DOI: 10.1002/chem.202104137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air-water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN-4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN-4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN-4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.
Collapse
Affiliation(s)
- Meihua Shen
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Xinpeng Zhao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education School of Materials Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Lu Han
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, 450000, P.R. China
| | - Nanxi Jin
- School of Life Engineering, Sung Kyun Kwan University, Seoul, Korea
| | - Song Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education School of Materials Science and Engineering, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China
| |
Collapse
|
37
|
Wang H, Zhang C, Ji X, Yang J, Zhang Z, Ma Y, Zhang Z, Zhou B, Shen J, Du A. Over 11 kg m -2 h -1 Evaporation Rate Achieved by Cooling Metal-Organic Framework Foam with Pine Needle-Like Hierarchical Structures to Subambient Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10257-10266. [PMID: 35170310 DOI: 10.1021/acsami.1c20769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar steam generation has become a hot research topic because of its great potential to alleviate the drinking water crisis without extra energy input. Although some efforts focusing on designing spatial geometry have been made to multiply the evaporation performances of up-to-date three-dimensional evaporators, they still have some shortcomings, such as low material and space utilization efficiencies, complex spatial geometry, energy loss due to the hot solar absorption surface, and salt crystallization due to inefficient water supply. Herein, a biomimetic copper-based metal-organic framework (Cu-Cu(OH)2-MOF) foam sheet with interconnected pores and pine needle-like hierarchical structures consisting of Cu(OH)2 nanowires and MOF nanowhiskers is fabricated. The pine needle-like hierarchical structures of Cu-Cu(OH)2-MOF foam contribute to absorbing solar energy and supplying sufficient water by trapping incident light and enhancing the capillary force, respectively. Inspired by drying clothes outside under solar irradiation, through exposing one end of the Cu-Cu(OH)2-MOF foam to air, the biface evaporator achieves a subambient evaporation surface temperature and an evaporation rate of up to 3.27 kg m-2 h-1 under only one sun illumination. Furthermore, when coupled with an air flow, the biface evaporator realizes an excellent evaporation rate of 11.58 kg m-2 h-1 with an energy efficiency of 160.07% even in seawater, ensuring its great application prospect to be used in drinking water production and seawater desalination.
Collapse
Affiliation(s)
- Hongqiang Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chen Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiujie Ji
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jianming Yang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zehui Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yi Ma
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhihua Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bin Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
38
|
Chitosan aerogel-carbon nanotubes double layer solar evaporator for efficient desalination. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|