1
|
Wang R, Li S, Hu Y, Wu S, Zhu J, An L, Xi P, Yan CH. Van der Waals heterostructures via spontaneous self-restacked assembling for enhanced water oxidation. Chem Sci 2025:d5sc02417j. [PMID: 40417287 PMCID: PMC12096886 DOI: 10.1039/d5sc02417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
The pursuit of sustainable energy solutions has identified water oxidation as a crucial reaction, with the oxygen evolution reaction (OER) serving as a decisive efficiency determinant in water technologies. This study presents a novel van der Waals (vdW) heterostructure catalyst, synthesized through a spontaneous self-restacking of nickel-iron-based phosphorus-sulfur compounds (NiPS3 and FePS3). Density Functional Theory (DFT) calculations underpinned the thermodynamic spontaneity of the restacking process, uncovering an electronic transition that significantly amplifies electrocatalytic functionality. The catalyst demonstrates a remarkable OER performance, achieving a low overpotential of 257 mV at 20 mA cm-2 and a Tafel slope of 49 mV dec-1 and demonstrates remarkable durability sustaining 500 mA cm-2 for 140 hours. In addition to its high performance, the material's rapid reconstruction facilitated by surface electron enrichment and the release of phosphate and sulfate during the OER underscores a dual enhancement in both activity and stability. The universality of the synthesis method is further demonstrated by extending the approach to other MPS3 materials (M = Mn, Co, Zn), establishing a generalized platform for developing high-performance OER catalysts. This work represents a significant advancement in the application of restacked vdW heterostructures as a foundation for advanced electrocatalytic materials.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Shuhui Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Shanshan Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
2
|
Ji Y, Tang B, Wang J, Zheng H, Weng Z, Wu Y, Li S, Thean AVY, Ang KW. High-Speed and Low-Energy Resistive Switching with Two-Dimensional Cobalt Phosphorus Trisulfide for Efficient Neuromorphic Computing. ACS NANO 2025; 19:722-735. [PMID: 39739429 DOI: 10.1021/acsnano.4c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Two-dimensional (2D) materials hold significant potential for the development of neuromorphic computing architectures owing to their exceptional electrical tunability, mechanical flexibility, and compatibility with heterointegration. However, the practical implementation of 2D memristors in neuromorphic computing is often hindered by the challenges of simultaneously achieving low latency and low energy consumption. Here, we demonstrate memristors based on 2D cobalt phosphorus trisulfide (CoPS3), which achieve impressive performance metrics including high switching speed (20 ns), low switching energy (1.15 pJ), high switching ratio (>400), and low switching voltages (1.05 V for set and -0.89 V for reset). The creation of sulfur vacancies in CoPS3 through an electroforming process facilitates the formation of conductive filaments, leading to uniform fast switching with minimal energy requirements. The CoPS3 memristors also show linear conductance modulation and long-term memory retention, enabling high-accuracy modeling of artificial neural networks for handwritten digit recognition and convolutional neural networks for image processing. Furthermore, robust memristive switching is achieved in solution-processed large-scale CoPS3 films, underscoring their potential for wafer-scale, low-temperature integration. The combination of rapid switching, low energy consumption, extended memory retention, high switching ratio, linear conductance update, and scalability manifests the potential of 2D CoPS3 materials for energy-efficient neuromorphic computing circuits.
Collapse
Affiliation(s)
- Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Baoshan Tang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Haofei Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Zhengjin Weng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yangwu Wu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
3
|
Guo Y, Cai G, Zhou J, Yang J, Voloshina E, Dedkov Y. XPS Analysis of Fe xNi yPS 3 vdW Materials Used in the Hydrogen Evolution Processes. Chemphyschem 2024; 25:e202400039. [PMID: 38526205 DOI: 10.1002/cphc.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
In response to the global demand for sustainable energy solutions, the quest for stable and cost-effective hydrogen production has garnered significant attention in recent decades. Here, the emergence of layered metal phosphorus trichalcogenides (MPX3, M: transition metal, X: chalcogen) materials and their two-dimensional counterparts with customizable composition and electronic structure holds great promise for such purposes. In the present study, we successfully synthesized large-scale and high-quality FePS3, NiPS3, and an alloyed counterpart, Fe0.5Ni0.5PS3. Subsequent systematic investigations were conducted to probe their respective electronic structures and assess their hydrogen evolution reaction (HER) properties. Remarkably, our results unveiled the successful modulation of the bandgap for FexNiyPS3, ultimately bestowing it with the most favorable HER performance for Fe0.5Ni0.5PS3 when compared to the other two samples. Furthermore, our exploration into the evolution of the X-ray photoelectron spectroscopy (XPS) spectra demonstrated that the charge conversions of metal cations play a pivotal role in the HER reactions. This critical insight further enriches our understanding of the fundamental mechanisms governing the performance of the prepared layered MPX3-based electrocatalysts, thus facilitating a comprehensive and detailed analysis of the pre- and post-HER reactions. This work not only sheds light on the intricate interplay between composition, electronic structure, and catalytic performance in the realm of novel electrocatalysts, but also contributes to the broader scientific community's pursuit of sustainable and efficient hydrogen production.
Collapse
Affiliation(s)
- Yefei Guo
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Guopu Cai
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Junhao Zhou
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Jiali Yang
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Elena Voloshina
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Yuriy Dedkov
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| |
Collapse
|
4
|
Song J, Fang Z, Liu L, Wei D, Yuan L. Application of density functional theory to study the electronic structure and magnetic behavior of clusters M nPS 3 (M = Fe, Co, Ni; n = 0 ~ 3). J Mol Model 2023; 29:240. [PMID: 37430136 DOI: 10.1007/s00894-023-05642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
CONTEXT The article explores and compares the electronic structure and magnetic properties of transition metal phosphate materials, namely FePS3, CoPS3, and NiPS3. RESEARCH FINDINGS Analysis of the optimized configuration reveals significant insights into the electronic properties of MnPS3 clusters. Electrons within the cluster exhibit a flow from the metal atom M and the non-metal atom P to the non-metal atom S. The S atom serves as the primary site for electrophilic reactions within the cluster, while the metal atom hosts the main site for nucleophilic reactions. Configurations 2a(2), 2b(2), 3a(4), 3b(3), and 3c(2) exhibit enhanced electron mobility and optimal electronic properties. Moreover, the analysis of the magnetic properties of the optimized configurations demonstrates that the magnetic behavior of MnPS3 clusters is influenced by the spin motion of α electrons in the p orbital. Metal atoms make a relatively significant contribution to the magnetic properties of MnPS3 clusters. Configurations 1b(3), 2c(4), and 3a(4) exhibit comparatively higher magnetic properties compared to other configurations of the same size. This study identifies the optimal configuration for the magnetic and electronic properties of transition metal phosphorothioate materials. It also elucidates the trends in magnetic and electronic properties as the number of metal atoms varies, thereby providing valuable theoretical support for the application of these materials in the fields of magnetic materials and electronic devices. METHODS In this study, the Fe-based transition elements, namely Fe, Co, and Ni, are selected as the metal atoms M. The cluster MPS3 is used to simulate the local structure of the material, allowing for an investigation into the influence of the metal atoms on its electronic and magnetic properties. By increasing the number of metal atoms and expanding the cluster size, the variations in these properties are explored. Density functional theory (DFT) calculations are performed using the B3LYP functional within the Gaussian09 software package. The MnPS3 cluster is subjected to optimal calculations and vibrational analysis at the def2-tzvp quantization level, resulting in optimized configurations with different spin multiplet degrees. Quantum chemistry software GaussView, wave function analysis software Multiwfn, and plotting software Origin are utilized for data characterization and graphical representation of the magnetic and electronic properties of the optimized configurations. Through the employment of these computational tools, valuable insights into the magnetic and electronic properties of the MnPS3 cluster and its dependency on different metal atoms are obtained.
Collapse
Affiliation(s)
- Jingli Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China
| | - Zhigang Fang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China.
| | - Li'e Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China
| | - Daixia Wei
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China
| | - Lin Yuan
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China
| |
Collapse
|
5
|
Zhang H, Wei T, Qiu Y, Zhang S, Liu Q, Hu G, Luo J, Liu X. Recent Progress in Metal Phosphorous Chalcogenides: Potential High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207249. [PMID: 36605005 DOI: 10.1002/smll.202207249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Guangzhi Hu
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Wang H, Jiao Y, Wu B, Wang D, Hu Y, Liang F, Shen C, Knauer A, Ren D, Wang H, van Aken PA, Zhang H, Sofer Z, Grätzel M, Schaaf P. Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202217253. [PMID: 36744542 DOI: 10.1002/anie.202217253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3 ) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with -7.51 mA cm-2 at -0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3 -based catalysts.
Collapse
Affiliation(s)
- Honglei Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Yunfei Jiao
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Bing Wu
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Yueqi Hu
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Fei Liang
- Institut für Materialwissenschaft, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Chen Shen
- Institut für Materialwissenschaft, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Andrea Knauer
- Institute of Micro- and Nanotechnologies MacroNano®, TU Ilmenau, Gustav-Kirchhoff- Str.7, 98693, Ilmenau, Germany
| | - Dan Ren
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hongbin Zhang
- Institut für Materialwissenschaft, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Peter Schaaf
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| |
Collapse
|
7
|
Oliveira FM, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R. 2D Layered Bimetallic Phosphorous Trisulfides M I M III P 2 S 6 (M I = Cu, Ag; M III = Sc, V, Cr, In) for Electrochemical Energy Conversion. SMALL METHODS 2023; 7:e2201358. [PMID: 36604980 DOI: 10.1002/smtd.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Considerable improvements in the electrocatalytic activity of 2D metal phosphorous trichalcogenides (M2 P2 X6 ) have been achieved for water electrolysis, mostly with MII 2 [P2 X6 ]4- as catalysts for hydrogen evolution reaction (HER). Herein, MI MIII P2 S6 (MI = Cu, Ag; MIII = Sc, V, Cr, In) are synthesized and tested for the first time as electrocatalysts in alkaline media, towards oxygen reduction reaction (ORR) and HER. AgScP2 S6 follows a 4 e- pathway for the ORR at 0.74 V versus reversible hydrogen electrode; CuScP2 S6 is active for HER, exhibiting an overpotential of 407 mV and a Tafel slope of 90 mV dec-1 . Density functional theory models reveal that bulk AgScP2 S6 and CuScP2 S6 are both semiconductors with computed bandgaps of 2.42 and 2.23 eV, respectively and overall similar electronic properties. Besides composition, the largest difference in both materials is in their molecular structure, as Ag atoms sit at the midpoint of each layer alongside Sc atoms, while Cu atoms are raised to a similar height to S atoms, in the external segment of the 2D layers. This structural difference probably plays a fundamental role in the different catalytic performances of these materials. These findings show that MI (Cu, Ag) together with Sc(MIII ) leads to promising achievements in MI MIII P2 S6 materials as electrocatalysts.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Jan Paštika
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Iva Plutnarová
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Karol Strutyński
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Rui Gusmão
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
8
|
Jin Y, Jin Y, Li K, Yan M, Guo Y, Zhou Y, Preobrajenski A, Dedkov Y, Voloshina E. Mixed Insulating State for van der Waals CoPS 3. J Phys Chem Lett 2022; 13:10486-10493. [PMID: 36326647 DOI: 10.1021/acs.jpclett.2c02992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-scale high-quality van der Waals CoPS3 single crystals are synthesized using a chemical vapor transport (CVT) method. The crystallographic structure and electronic properties of this layered material are systematically studied using different spectroscopic methods (XPS, NEXAFS, and resonant photoelectron spectroscopy) accompanied by density functional theory (DFT) calculations. All experimental and theoretical data allow assignment of this material to the class of mixed Mott-Hubbard/charge-transfer insulator with Udd ≅ Δ. All obtained results can enrich the information on the new class of van der Waals materials, transition metal phosphorus trichalcogenides, and help to further effectively exploit their electronic, optical, and transport properties, which are important for adopting this kind of materials into different application areas, such as spintronics and catalysis.
Collapse
Affiliation(s)
- Yukun Jin
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | - Yichen Jin
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | - Kexin Li
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | - Mouhui Yan
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, 200444Shanghai, China
| | - Yefei Guo
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | - Yong Zhou
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | | | - Yuriy Dedkov
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
- Materials Genome Institute, Shanghai University, Shangda Road 99, 200444Shanghai, China
| | - Elena Voloshina
- Department of Physics, Shanghai University, Shangda Road 99, 200444Shanghai, China
- Materials Genome Institute, Shanghai University, Shangda Road 99, 200444Shanghai, China
| |
Collapse
|
9
|
Coleman N, Liyanage IA, Lovander MD, Leddy J, Gillan EG. Facile Solvent-Free Synthesis of Metal Thiophosphates and Their Examination as Hydrogen Evolution Electrocatalysts. Molecules 2022; 27:molecules27165053. [PMID: 36014292 PMCID: PMC9413033 DOI: 10.3390/molecules27165053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The facile solvent-free synthesis of several known metal thiophosphates was accomplished by a chemical exchange reaction between anhydrous metal chlorides and elemental phosphorus with sulfur, or combinations of phosphorus with molecular P2S5 at moderate 500 °C temperatures. The crystalline products obtained from this synthetic approach include MPS3 (M = Fe, Co, Ni) and Cu3PS4. The successful reactions benefit from thermochemically favorable PCl3 elimination. This solvent-free route performed at moderate temperatures leads to mixed anion products with complex heteroatomic anions, such as P2S64−. The MPS3 phases are thermally metastable relative to the thermodynamically preferred separate MPx/ MSy and more metal-rich MPxSy phases. The micrometer-sized M-P-S products exhibit room-temperature optical and magnetic properties consistent with isolated metal ion structural arrangements and semiconducting band gaps. The MPS3 materials were examined as electrocatalysts in hydrogen evolution reactions (HER) under acidic conditions. In terms of HER activity at lower applied potentials, the MPS3 materials show the trend of Co > Ni >> Fe. Extended time constant potential HER experiments show reasonable HER stability of ionic and semiconducting MPS3 (M = Co, Ni) structures under acidic reducing conditions.
Collapse
|
10
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
11
|
Kim KH, Kim KH, Choi W, Kim YM, Hong SH, Choi YH. Mapping the electrocatalytic water splitting activity of VO 2 across its insulator-to-metal phase transition. NANOSCALE 2022; 14:8281-8290. [PMID: 35583399 DOI: 10.1039/d2nr01515c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic water splitting activity of V-based oxides has been rarely investigated, even though several polymorphs in VO2 are expected to exhibit different electrocatalytic activities depending on their crystal and electronic structures. The rutile structure of VO2(R), showing metallic character, is a good candidate for a new electrocatalyst since it undergoes insulator-to-metal transition (IMT) from the insulating VO2(M1) at a low temperature of 68 °C, and involves a substantially increased electrical conductivity by three orders of magnitude. The extensive improvements in the electrocatalytic activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) are confirmed when the IMT is induced where the overpotential (η10) is reduced from 1056 mV to 598 mV in the OER and 411 mV to 136 mV in the HER, respectively. This improvement is attributed to the increased electrochemically active surface area (ECSA), reduced charge transfer resistance, and increased electron density, driven by the IMT to the metallic VO2(R) phase.
Collapse
Affiliation(s)
- Kyeong-Ho Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
| | - Kyung-Hwan Kim
- School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Republic of Korea.
| | - Wooseon Choi
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong-Hyeon Hong
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
| | - Yun-Hyuk Choi
- School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Republic of Korea.
| |
Collapse
|
12
|
Paštika J, Oliveira FM, Mazánek V, Sofer Z, Gusmão R. Synthesis of Magnesium Phosphorous Trichalcogenides and Applications in Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200355. [PMID: 35373472 DOI: 10.1002/smll.202200355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Promising applications of metal phosphorous trichalcogenides (M2 P2 X6 or MPX3 ) have been predicted in optoelectronics, photoelectrocatalysis, and water-splitting reactions, mainly due to its wide bandgap. Transition metals are widely used in the synthesis of MPX3 , however, divalent cations of alkaline earth metals can also be constituents in MPX3 2D layered structures. Herein, MgPX3 (X = S, Se) are synthesized and their photoelectrochemical (PEC) activity is tested in the hydrogen evolution and oxygen evolution reaction (OER) regions under a wide range of wavelengths. MgPSe3 photoelectrode shows the best PEC performance with a response of 1.6 ± 0.1 mA cm-2 under 420 nm. In the light-assisted OER, a 200 mV improvement is obtained in the overpotential at 10 mA cm-2 for MgPSe3 . The better performance of MgPSe3 is consistent with its lower optical bandgap (Eg = 3.15 eV), as a result of the variation of electronegativity between selenide and sulfide.
Collapse
Affiliation(s)
- Jan Paštika
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Rui Gusmão
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
13
|
Pires LS, Magalhães FD, Pinto AM. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers (Basel) 2022; 14:1464. [PMID: 35406337 PMCID: PMC9003422 DOI: 10.3390/polym14071464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
The constant evolution and advancement of the biomedical field requires robust and innovative research. Two-dimensional nanomaterials are an emerging class of materials that have risen the attention of the scientific community. Their unique properties, such as high surface-to-volume ratio, easy functionalization, photothermal conversion, among others, make them highly versatile for a plethora of applications ranging from energy storage, optoelectronics, to biomedical applications. Recent works have proven the efficiency of 2D nanomaterials for cancer photothermal therapy (PTT), drug delivery, tissue engineering, and biosensing. Combining these materials with hydrogels and scaffolds can enhance their biocompatibility and improve treatment for a variety of diseases/injuries. However, given that the use of two-dimensional nanomaterials-based polymeric composites for biomedical applications is a very recent subject, there is a lot of scattered information. Hence, this review gathers the most recent works employing these polymeric composites for biomedical applications, providing the reader with a general overview of their potential.
Collapse
Affiliation(s)
- Laura S. Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
14
|
Zhang M, Zhou L, Du X, Huang X, Liu H, Wang Q, Guo L, Wang H. Rapid In-Situ Growth of Oxygen-defects Rich Fe(OH)3@Co(OH)2@NF Nanoarray as Efficient OER Electrocatalyst. CHEM LETT 2022. [DOI: 10.1246/cl.210814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengyuan Zhang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Lina Zhou
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xuena Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xianmin Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hui Liu
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Qingbo Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Long Guo
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hai Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| |
Collapse
|