1
|
Gupta R, Aashish, Upma, Majumdar S, Chowdhury PK, Gupta R. Visible light mediated photocatalysis by lanthanide metal-organic frameworks: enhanced specificity and mechanistic insights. Chem Sci 2024:d4sc04105d. [PMID: 39464601 PMCID: PMC11506566 DOI: 10.1039/d4sc04105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
The utilization of earth-abundant photosensitizers with visible light absorption to enable sustainable photocatalysis is a long-standing challenge. Overcoming such a challenge, in this work, two lanthanide (Ln3+ = Tb, Eu) based metal-organic frameworks (Ln-MOFs) have been synthesized utilizing a Co3+-based metalloligand. Both Ln-MOFs function as remarkable photocatalysts for the selective oxidation of assorted alcohols and sulfides to their corresponding aldehydes/ketones and sulfoxides using visible light. The photophysical behavior of both Ln-MOFs and mechanism of photocatalysis is comprehensively investigated using time-resolved transient absorption spectroscopy, electrochemical impedance spectroscopy, electron paramagnetic resonance spectroscopy, photoluminescence and phosphorescence studies. In both Ln-MOFs, a metalloligand acts as a light-harvester, being excited by visible light, while Ln3+ ions endow the resulting MOFs with long-lived triplet excited states. Ultrafast transient absorption spectroscopy, further supported by electron paramagnetic resonance spectra, revealed excited-state electron transfer from metalloligands to the Ln3+ ions and transient generation of Ln2+ sites alongside the facilitation of intersystem crossing. The excited Ln2+ ions transfer energy to the ground-state triplet oxygen (3O2) to generate singlet oxygen (1O2). The HOMO-LUMO positions of both Ln-MOFs support the generation of ˙O2 - and 1O2 but inhibit strongly-oxidizing yet non-selective ˙OH radicals. Scavenger experiments, 1O2 traps and electron paramagnetic resonance spectra confirmed the generation of singlet oxygen. The heavy-metal effect of a lanthanide ion in Ln-MOFs for the generation of triplet excitons is confirmed by the synthesis of a non-heavy-metal analogue involving a zinc ion via a single-crystal-to-single-crystal transformation strategy. The present results are noteworthy and may aid in the development of other earth-abundant metalloligand-based photocatalysts for challenging yet sustainable catalysis.
Collapse
Affiliation(s)
- Ruchika Gupta
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | - Aashish
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | - Upma
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | | | | | - Rajeev Gupta
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| |
Collapse
|
2
|
Tong J, Shu J, Wang Y, Qi Y, Wang Y. A bioactive sprite: Recent advances in the application of vinyl sulfones in drug design and organic synthesis. Life Sci 2024; 352:122904. [PMID: 38986895 DOI: 10.1016/j.lfs.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Vinyl sulfones, with their exceptional chemical properties, are known as the "chameleons" of organic synthesis and are widely used in the preparation of various sulfur-containing structures. However, their most alluring feature lies in their biological activity. The vinyl sulfone skeleton is ubiquitous in natural products and drug molecules and boasts a unique molecular structure and drug activity when compared to conventional drug molecules. As a result, vinyl sulfones have been extensively studied, playing a critical role in organic synthesis and pharmaceutical chemistry. In this review, we present a comprehensive analysis of the recent applications of vinyl sulfone structures in drug design, biology, and chemical synthesis. Furthermore, we explore the prospects of vinyl sulfones in diverse fields, offering insight into their potential future applications.
Collapse
Affiliation(s)
- Jiangtao Tong
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiong Shu
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yajuan Qi
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Ren HT, Cai CC, Zhu PY, Wang C, Wu SH, Liu Y, Han X. Photocatalytic Generation of H 2O 2 Via a Hydrogen-Abstraction Pathway by Bi 2.15WO 6 under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7384-7394. [PMID: 38530344 DOI: 10.1021/acs.langmuir.3c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Photocatalytic technology is a popular research area for converting solar energy into environmentally friendly chemicals and is considered the greenest approach for producing H2O2. However, the corresponding reactive oxygen species (ROS) and pathway involved in the photocatalytic generation of H2O2 by the Bi2.15WO6-glucose system are still not clear. Quenching experiments have established that neither •OH nor h+ contribute to the formation of H2O2, and show that the formed surface superoxo (≡Bi-OO•) and peroxo (≡Bi-OOH) species are the predominant ROS in H2O2 generation. In addition, various characterizations indicate the enhanced electron-transfer on the surface of Bi2.15WO6 with increasing contents of glucose via the ligand-to-metal charge transfer pathway, confirming H-transfer from glucose to ≡Bi-OO• or ≡Bi-OOH. The increased production of H2O2 with decreasing bond dissociation energy (BDEO-H) values of various phenolic compounds again supports the H-transfer mechanism from phenolic compounds to ≡Bi-OO• and then to ≡Bi-OOH. DFT calculations further reveal that on the Bi2.15WO6 surface, oxygen is sequentially reduced to ≡Bi-OO• and ≡Bi-OOH, while H-transfer from H2O or glucose to ≡Bi-OO• and ≡Bi-OOH, resulting in the production of H2O2. The lower energy barrier of H-transfer from adsorbed glucose (0.636 eV) than that from H2O (1.157 eV) indicates that H-transfer is more favorable from adsorbed glucose. This work gives new insight into the photocatalytic generation of H2O2 by Bi2.15WO6 in the presence of glucose/phenolic compounds via the H-abstraction pathway.
Collapse
Affiliation(s)
- Hai-Tao Ren
- Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Chao-Chen Cai
- Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Peng-Yue Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Cong Wang
- Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang Hebei 065201, P.R. China
| | - Song-Hai Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300382, P.R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300382, P.R. China
| | - Xu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300382, P.R. China
| |
Collapse
|
4
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
5
|
Boivin L, Schlachter A, Fortin D, Harvey PD. Truxene-to-Fluorenone Energy Transfer in a Robust Mesoporous Zn-MOF. Inorg Chem 2023. [PMID: 38109694 DOI: 10.1021/acs.inorgchem.3c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A new metal-organic framework (MOF; [Zn4O(hett)4/3(fluo)1/2(bdc)1/2]n; TFT-MOF) constructed on chromophoric ligands 5,5',10,10',15,15'-hexaethyltruxene-2,7,12-triacetate (hett), 9-fluorenone-2,7-dicarboxylate (fluo), terephthalate (bdc), and the Zn4O node has been prepared and identified by powder X-ray diffraction. This luminescent MOF exhibits large mesoporous pores of 2.7 nm based on computer modeling using density functional theory (DFT) calculations. The steady-state and time-resolved fluorescence spectra and photophysical parameters of TFT-MOF have been investigated and compared with those of the free ligands and their basic chromophores. All in all, TFT-MOF exhibits particularly efficient singlet-singlet energy-transfer processes described as 1(hett)* → (fluo) and 1(bdc)* → (fluo), leading to fluorescence arising for the fluo lumophore operating only through Förster resonance energy transfer (FRET) with an efficiency of transfer of up to >95%. This experimental conclusion was corroborated by DFT and time-dependent DFT (TDDFT). For the 1(hett)* → (fluo) process, the approximated overall rate constant of energy transfer was evaluated to be at most 2.04 × 1010 s-1 (using a Stern-Volmer approach of solution data and the relationship between distance and concentration). This process was analyzed using the Förster theory, where two intrapore energy transfer paths of center-to-center distances of 13 and 25 Å have been identified. TFT-MOF photosensitizes the formation of singlet oxygen (1O2 (1Σg)) as detected by its phosphorescence signal at 1275 nm.
Collapse
Affiliation(s)
- Léo Boivin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Daniel Fortin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
6
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
7
|
Wu Y, Hu Q, Zeng X, Xu L, Liang Y, Yu Z. Co-occurrence of polycyclic aromatic hydrocarbons and their oxygenated derivatives in indoor dust from various microenvironments in Guangzhou, China: levels, sources, and potential human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57006-57016. [PMID: 36930318 DOI: 10.1007/s11356-023-26476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
For decades, the presence and potential health risk of polycyclic aromatic hydrocarbons (PAHs) in indoor dust have been extensively investigated while with limited attention to oxygenated PAHs (OPAHs). In this study, we collected 45 indoor dust from four microenvironments in Guangzhou City, China, and then focused on the co-occurrence of 16 PAHs and 8 OPAHs and their potential carcinogenic risk to humans. The ΣPAHs concentrations, dominated by 4-6 ring PAHs, ranged from 1761 to 14,290 ng/g (mean of 6058 ng/g) without significant difference in the different microenvironments (Tukey, p > 0.05). The OPAHs were observed with concentrations from 250 to 5160 ng/g (mean of 1646 ng/g), and anthraquinone (AQ) was identified as the main OPAHs with significantly high levels in the residential environment than in instrumental rooms. Notably, AQ dominated over the other target analytes in dust in this study. Our results indicated that PAHs and OPAHs in indoor dust were from outdoor environments, which mainly originated from vehicular exhaust and biomass/coal combustion. A potential cancer risk of PAHs and OPAHs to local adults and children was observed via inhalation, ingestion, and dermal absorption, with the main contribution from benzo[a]pyrene and dibenz[a,h]anthracene.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Qiongpu Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Liang Xu
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330029, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
8
|
Chen Y, Liu AG, Liu PD, Zhang ZY, Yu F, Qi W, Li B. Application of Copper(II)-Organic Frameworks Bearing Dilophine Derivatives in Photocatalysis and Guest Separation. Inorg Chem 2022; 61:16009-16019. [PMID: 36153966 DOI: 10.1021/acs.inorgchem.2c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalized design of metal-organic frameworks (MOFs) has been rapidly developed in the last 20 years, and its broad applicability has been demonstrated in many fields. MOFs with desired functions can be assembled using predesigned organic linkers with specific metal nodes, which possess the ordered functional sites and open structures. Although a large number of carboxylic acid junctions have been used to construct MOFs, it is still a great challenge to realize their multifunctionality. In particular, there is a relative lack of research on MOFs as direct photocatalysts, which require not only abundant active sites and open structures but also adsorption groups and effective electron-hole separation performance. To this end, MOFs constructed from the carboxylic acid ligands derived from lophine-based derivatives and copper ions were deliberately used as a photocatalyst, and then, their application in dye degradation and aromatic alcohol conversion was investigated. In addition, in combination with the abundant Lewis sites of copper ions and imidazole sites, the material shows not only the adsorption and separation of C2 series and dyes but also the application of dye degradation and conversion of aromatic alcohols under illumination conditions. The corresponding results fully illustrate that the MOF constructed by using lophine derivatives can be an effective way to prepare photocatalysts. The subsequent research ideas will focus on designing a series of MOFs constructed with multilinked moieties of lophine groups and exploring their application strategies in the field of photocatalysis.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen-Yi Zhang
- Bruker Company, 9F, Building NO. 1, Lane 2570, Hechuan Rd, Minhang District, Shanghai 200233, China
| | - Fan Yu
- State Key Laboratory of Precision Blasting, Hubei Key Laboratory of Blasting Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Wei Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
9
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Tang Y, Zhao L, Ji G, Zhang Y, He C, Wang Y, Wei J, Duan C. Ligand regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic photoredox and nickel catalytic cross-coupling systems have created a great attraction as a promising methodology to produce the aryl C−N bonds under mild conditions as well as extreme challenge,...
Collapse
|
12
|
Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions. Chem Asian J 2021; 16:3985-3992. [PMID: 34652071 DOI: 10.1002/asia.202100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks (MOFs) consisting of organic radicals are of great interest because they have exhibited unique and intriguing optical, electronic, magnetic, and chemo-catalytic properties, and thus have demonstrated great potential applications in optical, electronic, and magnetic devices, and as catalysts. However, the preparation of MOFs bearing stable organic radicals is very challenging because most organic radicals are highly reactive and difficult to incorporate into the framework of MOFs. Herein we reported a post-synthetic modification strategy to prepare a novel MOF containing phenazine radical cations, which was used as heterogeneous catalyst for aza-Diels-Alder reaction. The zinc-based metal-organic framework Zn2 (PHZ)2 (dabco) (N) was successfully synthesized from 5,10-di(4-benzoic acid)-5,10-dihydrophenazine (PHZ), triethylene diamine (dabco) with Zn(NO3 )2 ⋅ 6H2 O by solvothermal method. The as-synthesized MOF N was partially oxidized by AgSbF6 to form MOF R containing ∼10% phenazine radical cation species. The resultant MOF R was found to keep the original crystal type of N and very persistent under ambient conditions. Consequently, MOF R was successfully employed in radical cation-catalyzed aza-Diels-Alder reactions with various imine substrates at room temperature with high reaction conversion. Moreover, heterogeneous catalyst MOF R was reusable up to five times without much loss of catalytic activity, demonstrating its excellent stability and recyclability. Therefore, the post-synthetic modification developed in this work is expected to become a versatile strategy to prepare radical-based MOFs for the application of heterogeneous catalysts in organic synthesis.
Collapse
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ye-Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
13
|
Karakaya I. Amphiphilic Polypyridyl Ruthenium Catalyzed, Photoredox‐Mediated C−H Arylation of Heteroarenes with Aryl Diazonium Salts. ChemistrySelect 2021. [DOI: 10.1002/slct.202103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Idris Karakaya
- Department of Chemistry College of Basic Sciences Gebze Technical University 41400 Gebze Turkey
| |
Collapse
|