1
|
Cheon S, Cho WJ, Yi GR, Kang B, Oh SS. Ultrafast and Reversible Superwettability Switching of 3D Graphene Foams via Solvent-Exclusive Plasma Treatments. ACS NANO 2024; 18:24012-24023. [PMID: 39033415 DOI: 10.1021/acsnano.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For highly active electron transfer and ion diffusion, controlling the surface wettability of electrically and thermally conductive 3D graphene foams (3D GFs) is required. Here, we present ultrasimple and rapid superwettability switching of 3D GFs in a reversible and reproducible manner, mediated by solvent-exclusive microwave arcs. As the 3D GFs are prepared with vapors of nonpolar acetone or polar water exclusively, short microwave radiation (≤10 s) leads to plasma hotspot-mediated production of methyl and hydroxyl radicals, respectively. Upon immediate radical chemisorption, the 3D surfaces become either superhydrophobic (water contact angle = ∼170°) or superhydrophilic (∼0°), and interestingly, the wettability transition can be repeated many times due to the facile exchange between previously chemisorbed and newly introduced radicals via the formation of methanol-like intermediates. When 3D GFs of different surficial polarities are incorporated into electric double-layer capacitors with nonpolar ionic liquids or polar aqueous electrolytes, the polarity matching between graphene surfaces and electrolytes results in ≥548.0 times higher capacitance compared to its mismatching at ≥0.5 A g-1, demonstrating the significance of wettability-controlled 3D GFs.
Collapse
Affiliation(s)
- Soomin Cheon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Won-Jang Cho
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Byoungwoo Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
2
|
Zhang X, Liu F, Ji X, Cui L, Li C, Liu J. Facile generation of CeO 2 nanoparticles on multiphased NiS x nanoplatelet arrays as a free-standing electrode for efficient overall water splitting. J Colloid Interface Sci 2024; 653:308-315. [PMID: 37717431 DOI: 10.1016/j.jcis.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Constructing nanostructured electrocatalysts with heterointerface and finetuning their electronic properties are essential for high-efficient overall water splitting. Here, we prepared a well-designed nano-flower-like multiphase and hybrid material of NiS/NiS2/CeO2/NF (NiSx/CeO2/NF) with rich heterointerfaces and abundant active sites through solvothermal reaction and post-annealing treatment. The as-fabricated NiSx/CeO2/NF exhibits exceptional catalytic performance for OER and HER. Specifically, in 1 M KOH solution, it requires the low overpotentials of 326 and 92 mV to achieve the current density of 200 and 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. More satisfactorily, when NiSx/CeO2/NF is used as the bifunctional catalyst, a low voltage of only 1.53 V is required to achieve a current density of 10 mA cm-2 for overall water splitting. The excellent catalytic performance should be attributed to its special heterogeneous structure and the synergy effect between NiSx and CeO2. This work emphasizes the important significance of constructing efficient bifunctional electrocatalysts by reasonably designing heterostructures and multiphase components for overall water splitting.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China; College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Fuguang Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Xuqiang Ji
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China
| | - Chuanming Li
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China; College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
3
|
Liu Y, Wu N, Zeng H, Hou D, Zhang S, Qi Y, Yang R, Wang L. Slip-Enhanced Transport by Graphene in the Microporous Layer for High Power Density Proton-Exchange Membrane Fuel Cells. J Phys Chem Lett 2023; 14:7883-7891. [PMID: 37639374 DOI: 10.1021/acs.jpclett.3c01661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proton exchange membrane (PEM) fuel cells are a promising and environmentally friendly device to directly convert hydrogen energy into electric energy. However, water flooding and gas transport losses degrade its power density owing to structural issues (cracks, roughness, etc.) of the microporous layer (MPL). Here, we introduce a green material, supercritical fluid exfoliated graphene (s-Gr), to act as a network to effectively improve gas transport and water management. The assembled PEM fuel cell achieves a power density of 1.12 W cm-2. This improved performance is attributed to the reduction of cracks and the slip of water and gas on the s-Gr surface, in great contrast to the nonslip behavior on carbon black (CB). These findings open up an avenue to solve the water and gas transport problem in porous media by materials design with low friction and provide a new opportunity to boost high power density PEM fuel cells.
Collapse
Affiliation(s)
- Ye Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ningran Wu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haiou Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Dandan Hou
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shengping Zhang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Luda Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Specific unlocking of the butterfly effect: nanointerface-based electrochemical biosensing of adenosine triphosphate and alkaline phosphatase. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Wang C, Li Y, Wang H, Wang Y, Chen X, Li C, Sun M, Chen J. High performance polyamide crosslinked graphene oxide/MPNs nanofiltration membrane for wastewater purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|