1
|
Li Q, Zheng S, Gao W, Zou G, Cheng Y. Circularly Polarized Ultraviolet Light-Activated Asymmetric Photopolymerization for the Synthesis of CPL-Active Materials. Angew Chem Int Ed Engl 2025; 64:e202503197. [PMID: 40040578 DOI: 10.1002/anie.202503197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/06/2025]
Abstract
Circularly polarized ultraviolet light (CP-UVL) offers significant potential for practical applications in asymmetric photocatalysis and photopolymerization. However, the development of CP-UVL-active materials has been hindered by their low emission dissymmetry factors (gem). Here, we present a high-performance CP-UVL material for asymmetric photopolymerization, achieved through thermodynamic regulation of a chiral supramolecular assembly. The chiral coassembled enantiomers, R/S-BNC/OXD-7, are synthesized using the naphthylamine derivative R/S-BNC as the chiral donor and OXD-7 as the achiral acceptor. Upon annealing at different temperatures, OXD-7 detaches from the chiral coassembly of S-BNC/OXD-7 and then self-assembles into ordered helical nanostructures, exhibiting temperature-dependent CP-UVL (λem = 360 nm, with gem up to +0.188). Remarkably, the strong CP-UVL emission acts as a chiral excitation source, triggering the asymmetric photopolymerization of RM257 (which contains the achiral dye TPABBI and the photoinitiator Irg651), resulting in the generation of blue CPL (λem = 460 nm, gem = -0.072). This study provides a simple yet effective strategy for designing high-performance CP-UVL materials for CPL-induced asymmetric photopolymerization.
Collapse
Affiliation(s)
- Qihuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Suwen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wentong Gao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Guo Zou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Lai L, Wang S, Sang Y, Feng C, Liu M, Wang F, Lin S, Zhou Q. Multicolor and sign-invertible circularly polarized luminescence from nonchiral charge-transfer complexes assembled with N-terminal aromatic amino acids. NANOSCALE 2025; 17:788-796. [PMID: 39618310 DOI: 10.1039/d4nr04308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Circularly polarized luminescence (CPL) materials with precisely controlled emission colors and handedness are highly desirable for their promising applications in advanced optical technologies, but it is rather challenging to obtain them primarily due to the lack of convenient, powerful, and universal preparation strategies. Herein, we report a simple yet versatile solution route for constructing multicolor CPL materials with controllable handedness from nonchiral luminescent charge-transfer (CT) complexes through co-assembly with chiral N-terminal aromatic amino acids. The resulting ternary co-assemblies exhibit obvious CPL signals from 489 to 601 nm, covering from blue via green and yellow to orange-red. Notably, the CPL sign can be readily inverted by changing the substituents at the α-position of amino acids or the molecular structure of achiral electron donors due to effects on the hydrogen bonds, CT interactions, and stacking patterns. This work provides a new insight into developing CPL materials with tunable color and inverted handedness.
Collapse
Affiliation(s)
- Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shunan Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yunxiao Sang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chen Feng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Geng Z, Wang Z, Zhu SE, Wang P, Yao K, Cheng Y, Chu B. Tunable circularly polarized luminescence behaviors caused by the structural symmetry of achiral pyrene-based emitters in chiral co-assembled systems. J Colloid Interface Sci 2024; 669:561-568. [PMID: 38729004 DOI: 10.1016/j.jcis.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The regulation of circularly polarized luminescence (CPL) behavior is of great significance for practical applications. Herein, we deliberately designed three achiral pyrene derivatives (Py-1, Py-2, and Py-3) with different butoxy-phenyl substituents and the chiral binaphthyl-based inducer (R/S-B) with anchored dihedral angle to construct chiral co-assemblies, and explored their induced CPL behaviors. Interestingly, the resulting co-assemblies demonstrate tunable CPL emission behaviors caused by the structural symmetry effect of achiral pyrene-based emitters during the chiral co-assembly process. And in spin-coated films, the dissymmetry factor (gem) values were 9.1 × 10-3 for (R/S-B)1-(Py-1)10, 5.6 × 10-2 for (R/S-B)1-(Py-2)7, and 8.6 × 10-4 for (R/S-B)1-(Py-3)1, respectively. The strongest CPL emission (|gem| = 5.6 × 10-2, λem = 423 nm, QY = 34.8 %) was detected on (R/S-B)1-(Py-2)7 due to the formation of regular and ordered helical nanofibers through the strong π-π stacking interaction between the R/S-B and the achiral Py-2 emitter. The strategy presented here provides a creative approach for progressively regulating CPL emission behaviors in the chiral co-assembly process.
Collapse
Affiliation(s)
- Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, PR China.
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| |
Collapse
|
4
|
Baek S, Heo JM, Bae K, Khazi MI, Lee S, Kim K, Kim JM. Co-assembly-Directed Enhancement of the Thermochromic Reversibility and Solvatochromic Selectivity of Supramolecular Polydiacetylene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133524 DOI: 10.1021/acs.langmuir.4c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The construction of functional materials via the co-assembly of multimolecular systems has recently emerged as a fascinating topic. The co-assembled multicomponent could promote the evolution of supramolecular assemblies into a high-order nanoarchitecture with improved functional properties. We report the successful preparation of a dual-functional polydiacetylene (MCPDA-Tz-CA) having thermochromic and solvatochromic properties via facile co-assembly of MCDA-Tz and cyanuric acid (MCDA-Tz-CA) followed by ultraviolet-induced polymerization. Molecular packing patterns from powder X-ray diffraction and density functional theory calculations of molecular self-assembly processes confirm highly ordered co-assembled lamellar structures. MCPDA-Tz-CA showed excellent reversible thermochromism properties when the temperature was increased from 30 to 150 °C with a reversible blue-to-red color transition that could be detected by the naked eye. Also, MCPDA-Tz-CA displayed selective blue-to-red solvatochromism against dimethylformamide and dimethyl sulfoxide. Detailed investigations revealed that the enhanced thermochromic reversibility and solvatochromic selectivity could be attributed to the hydrogen-bonding interactions and the formation of a network structure in the MCDA-Tz/cyanuric acid co-assembly. Our research opens a promising route for improving the performance of functional materials via noncovalent multicomponent arrangements at the molecular level.
Collapse
Affiliation(s)
- Seungjoo Baek
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jung-Moo Heo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kwangmin Bae
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Seongjae Lee
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
Wang F, Lai L, Liu M, Zhou Q, Lin S. Achiral substituent- and stoichiometry-controlled inversion of supramolecular chirality and circularly polarized luminescence in ternary co-assemblies. NANOSCALE 2024; 16:8563-8572. [PMID: 38600859 DOI: 10.1039/d4nr00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Handedness inversion of supramolecular chirality and circularly polarized luminescence (CPL) in assembled systems containing more than two components with higher complexity is of prominent importance to simulate biological multicomponent species and design advanced chiral materials, but it remains a considerable challenge. Herein, we have successfully developed ternary co-assembly systems based on aromatic amino acids, vinylnaphthalene derivatives and 1,2,4,5-tetracyanobenzene with effective chirality transfer. Notably, the handedness of supramolecular chirality and CPL can be readily inverted by changing the residues of amino acids, the substituents of achiral vinylnaphthalene derivatives, or by adjusting the stoichiometric ratio. The hydrogen bonds, charge transfer interactions, and steric hindrance are proved to be the crucial factors for the chirality inversion. This flexible control over chirality not only offers insights into developing multicomponent chiral materials with desirable handedness from simple molecular building blocks, but also is of practical value for use in chiroptics, chiral sensing, and photoelectric devices.
Collapse
Affiliation(s)
- Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Yang YH, He R, Qin Y, Zhang L. Metal-ion-triggered symmetry breaking of completely achiral azobenzene amphiphiles in water. NANOSCALE 2024. [PMID: 38639490 DOI: 10.1039/d3nr06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Achieving control over symmetry breaking of completely achiral components in the aqueous phase is a significant challenge in supramolecular chemistry. Herein, we demonstrate that it is possible to construct chiral nanoassemblies by introducing metal ions (Zn2+, Fe3+, Al3+, Cu2+, and Ca2+) into completely achiral azobenzene amphiphiles with key structural factors in the pure aqueous phase. It is found that the coordination interactions, π-π stacking, hydrophilic and hydrophobic interactions, hydrogen bonding, and electrostatic interactions are crucial to the metal-ion-induced symmetry breaking of completely achiral building blocks. This study may provide an intriguing model system for constructing chiral assemblies based on completely achiral molecules.
Collapse
Affiliation(s)
- Yun-Han Yang
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Ran He
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yang Qin
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Ling Zhang
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Zhang J, Hao A, Xing P. Hypervalent Iodine(III) Mediated Halogen Bonded Supramolecular Chiral System with Cholesteryl Naphthalimides. Chemistry 2024:e202401004. [PMID: 38584138 DOI: 10.1002/chem.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Halogen bonding acknowledged as a noteworthy weak interaction, has gained growing recognition in the field of supramolecular chemistry. In this study, we selected structurally rigid diaryliodonium ions (I(III)) with two biaxial σ-holes as halogen-bond donors, to bind with three chiral acceptor molecules bearing cholesteryl and naphthalimides with distinct geometries. The abundant carbonyl oxygen atoms in side-arm substituents function as multiple acceptors for halogen bonding. The self-aggregation of chiral acceptor molecules demonstrates adaptiveness to solvent media, evidenced by the inversion of the Cotton effect and the morphological evolution from spherical to rod-like nanoarchitectures in different solvent systems. The distinct geometries of the acceptor molecules conferred various binding modes with I(III). The introduction of I(III) as a halogen-bond donor regulates the aggregation of the donors, achieving amplification of chiroptical signals and inheriting solvent responsiveness from the self-aggregated assembly. This study successfully utilized rational structural design and multimodal control strategies to achieve regulation of supramolecular chirality.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
9
|
Hansda B, Mondal B, Hazra S, Das KS, Castelletto V, Hamley IW, Banerjee A. Effect of molar ratio and concentration on the rheological properties of two-component supramolecular hydrogels: tuning of the morphological and drug releasing behaviour. SOFT MATTER 2023; 19:8264-8273. [PMID: 37869972 DOI: 10.1039/d3sm00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Self-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles. Individually, neither of these components formed a hydrogel, while mixtures with compositions 1 : 1, 1 : 2, and 2 : 1 (molar ratio) as A : B show hydrogel formation (Milli-Q water, at pH = 6.79). These hydrogels displayed a good shear-thinning behaviour with different mechanical stabilities and nano-fibrous network structures. The 1 : 1 hydrogel shows good cell viability for human embryonic kidney (HEK-293) cells and CHO cells indicating its non-cytotoxicity. The biocompatible, thixotropic 1 : 1 hydrogel with a nanofiber network structure shows the highest mechanical strength with a storage modulus of 3.4 × 103 Pa. The hydrogel is able to encapsulate drugs including antibiotics amoxicillin and rifampicin, and anticancer drug doxorubicin, and it exhibits sustainable release of 76%, 70%, and 81% respectively in vitro after 3 days. The other two mixtures (composition 1 : 2 and 2 : 1) are unable to form a hydrogel when they are loaded with these drugs. Interestingly, it is noticed that with an increase in concentration, the mechanical strength of a 1 : 1 hydrogel is significantly enhanced, showing potential that may act as a scaffold for tissue engineering. The two-component gel offers tunable mechanical properties, thixotropy, injectability, and biocompatibility and has great potential as a scaffold for sustained drug release and tissue engineering.
Collapse
Affiliation(s)
- Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
10
|
He S, Jiang Z, Dou X, Gao L, Feng C. Chiral Supramolecular Assemblies: Controllable Construction and Biological Activity. Chempluschem 2023; 88:e202300226. [PMID: 37438864 DOI: 10.1002/cplu.202300226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Chiral supramolecular assemblies with helical structures (e. g., proteins with α-helix, DNA with double helix, collagen with triple-helix) as the central structure motifs in biological systems play a crucial role in various physiological activities of living organisms. Variations in chiral structure can cause many abnormal physiological activities. To gain insight into the construction, structural transition, and related physiological functions of these complex helix in natural systems, it is necessary to fabricate artificial supramolecular assemblies with controllable helix orientation as research platform. This review discusses recent advances in chiral supramolecular assembly, including the precise construction and regulation of assembled chiral nanostructures with tunable chirality. Chiral structure-dependent biological activities, including cell proliferation, cell differentiation, antibacterial activity and tissue regeneration, are also discussed. This review not only contributes to further understanding of the importance of chirality in the physiological environment, but also plays an important role in the development of chiral biomedical materials for the treatment of diseases (e. g., tissue engineering regeneration, stem cell transplantation therapy).
Collapse
Affiliation(s)
- Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zichao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Xu H, Ma CS, Yu CY, Tong F, Qu DH. Reversible Inversion of Circularly Polarized Luminescence in a Coassembly Supramolecular Structure with Achiral Sulforhodamine B Dyes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25201-25211. [PMID: 37014285 DOI: 10.1021/acsami.2c22349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB. A series of experimental characterization, including optical spectroscopy, electron microscope, 1H NMR, and X-ray scattering measurements, suggested that SRB could coassemble with L4/SDS to establish a new stable L4/SDS/SRB supramolecular structure through electrostatic interactions. Moreover, the negative-sign CPL could revert to the positive-sign CPL if titanium dioxide (TiO2) nanoparticles were used to decompose SRB molecules. The evolution of the CPL inversion process could be cycled at least 5 times without a significant decline in CPL signals when SRB was refueled to the system. Our results provide a facile approach to dynamically regulating the handedness of CPL in a multiple-component supramolecular system via achiral species.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng-Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Xiao T, Tang L, Ren D, Diao K, Li ZY, Sun XQ. Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry 2023; 29:e202203463. [PMID: 36428221 DOI: 10.1002/chem.202203463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Responsive fluorescent nanomaterials have been received considerable attention in recent years. In this work, a bola-type amphiphilic molecule, CSO, was synthesized which contains a hydrophobic cyanostilbene core and hydrophilic oligo(ethylene glycol) (OEG) coils at both sides. The cyanostilbene group is aggregation-induced emission (AIE) active, while the OEG coils are thermo-responsive. As a result, the CSO molecules can self-assemble into blue-fluorescent nanoassemblies with lower critical solution temperature (LCST) behavior in aqueous media. It is noteworthy that the LCST behavior can be reversibly regulated with changes in concentration and the introduction of K+ . Intriguingly, fluorescence of CSO assembly shows a blue-shift upon heating. Finally, by employing CSO as a light capturing antenna and energy donor, an artificial light harvesting system with tunable emission and thermo-responsive characteristics was fabricated. This study not only demonstrates an integrated approach to create responsive fluorescent nanomaterials, but also shows great potential for producing luminescent materials and mimicking photosynthesis in nature.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Lu Tang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongxing Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Diao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zheng-Yi Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiao-Qiang Sun
- Institute of Urban & Rural Mining, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
13
|
Geng Z, Liu Z, Li H, Zhang Y, Zheng W, Quan Y, Cheng Y. Inverted and Amplified CP-EL Behavior Promoted by AIE-Active Chiral Co-Assembled Helical Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209495. [PMID: 36479735 DOI: 10.1002/adma.202209495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It is well-known that high-performance circularly polarized organic light-emitting diodes (CP-OLEDs) remain a formidable challenge to the future application of circularly polarized luminescent (CPL)-active materials. Herein, the design of a pair of AIE-active chiral enantiomers (L/D-HP) is described to construct chiral co-assemblies with an achiral naphthalimide dye (NTi). The resulting co-assemblies emit an inverted CPL signal compared with that from the L/D-HP enantiomers. After thermal annealing at 120 °C, the inverted CPL signal of this kind of L/D-HP-NTi with a 1:1 molar ratio shows regular and ordered helical nanofibers arranged through intermolecularly ordered layered packing and is accompanied with a further amplified effect (|gem | = 0.032, λem = 535 nm). Significantly, non-doped CP-OLEDs based on a device emitting layer (EML) of L/D-HP-NTi exhibits a low turn-on voltage (Von ) of 4.7 V, a high maximum brightness (Lmax ) of 2001 cd m-2 , and moderate maximum external quantum efficiency (EQEmax ) of 2.3%, as well as excellent circularly polarized electroluminescence (CP-EL) (|gEL | = 0.023, λem = 533 nm).
Collapse
Affiliation(s)
- Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
pH and Salt-Assisted Macroscopic Chirality Inversion of Gadolinium Coordination Polymer. Molecules 2022; 28:molecules28010163. [PMID: 36615357 PMCID: PMC9821918 DOI: 10.3390/molecules28010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The precise adjustment of handedness of helical architectures is important to regulate their functions. Macroscopic chirality inversion has been achieved in organic supramolecular systems by pH, metal ions, solvents, chiral and non-chiral additives, temperature, and light, but rarely in coordination polymers (CPs). In particular, salt-assisted macroscopic chirality inversion has not been reported. In this work, we carried out a systematic investigation on the role of pH and salt in regulating the morphology of CPs based on Gd(NO3)3 and R-(1-phenylethylamino)methylphosphonic acid (R-pempH2). Without extra NO3-, the chirality inversion from the left-handed superhelix R-M to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8. The addition of NaNO3 (2.0 eq) at pH 3.8 results in an inversion of chiral sense from R-P to R-M as a pure phase. To our knowledge, this is the first example of salt-assisted macroscopic helical inversion in artificial systems.
Collapse
|
15
|
Li S, Zhang S, Feng N, Zhang N, Zhu Y, Liu Y, Wang W, Xin X. Chiral Inversion and Recovery of Supramolecular Luminescent Copper Nanocluster Hydrogels Triggered by Polyethyleneimine and Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52324-52333. [PMID: 36416052 DOI: 10.1021/acsami.2c16428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of controllable chiroptical supramolecular luminescence systems is of great significance for developing intelligent chiral luminescence materials with precise and effective regulation and understanding chirality-switching phenomena in biological systems, which has attracted extensive attention. Because chiral metal nanoclusters (NCs) can provide facilities for the study of nanoscale chiral effects, in this study, we select chiral glutathione-stabilized copper NCs (G-SH-Cu NCs) to construct a supramolecular luminescent hydrogel with achiral branched polyethyleneimine (PEI) and polyoxometalates [Na9(EuW10O36)·32H2O, denoted as EuW10]. Thus, a chiral property precise controlled system was constructed by self-assembly. Interestingly, the addition of PEI to G-SH-Cu NC solution induced the formation of luminescent hydrogels with chiral inversion, while further addition of EuW10 not only enhanced the luminescence of the hydrogel but also recovered the chiroptical properties. The chiral inversion behavior is possibly ascribed to the hydrogen bond interaction/electrostatic interaction between G-SH-Cu NCs and PEI in the chiral inversion process, while the competition of hydrogen bonding interaction (between G-SH-Cu NCs and PEI) and electrostatic interaction (between PEI and EuW10) was accountable for the chiral recovery process. Manipulation of chirality inversion in the metal NC-containing coassemblies is rare, while this work establishes a feasible strategy to modulate the chiral inversion behavior of Cu NCs, which not only produces new physicochemical properties of metal NCs through synergistic behavior but also offers a feasible way to realize the potential application of chiroptical materials.
Collapse
Affiliation(s)
- Shulin Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shanshan Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Feng
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Na Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu Zhu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuhao Liu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenjuan Wang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Han Q, Wang Q, Gao A, Ge X, Wan R, Cao X. Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels 2022; 8:605. [PMID: 36286106 PMCID: PMC9601706 DOI: 10.3390/gels8100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2024] Open
Abstract
A gelator 1 containing functional quinoline and Schiff base groups that could form organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The self-assembly process of geator 1 was characterized by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly, gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequentially strengthened in the titration process. The obvious ratiometric detection process was presented with a limit of detection (LOD) of 5.51 μM. The detection mechanism was revealed by a theoretical calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the construction of functional self-assembly gel sensors for the detection of Zn2+.
Collapse
Affiliation(s)
- Qingqing Han
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qingqing Wang
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Aiping Gao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xuefei Ge
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Rong Wan
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
Wang K, Zhang W, Liu N, Hu D, Yu F, He YP. Methionine-Derived Organogels as Lubricant Additives Enhance the Continuity of the Oil Film through Dynamic Self-Healing Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11492-11501. [PMID: 36089744 DOI: 10.1021/acs.langmuir.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(S)-2-((1-(Hexadecylamino)-4-(methylthio)-1-oxobutan-2-yl)carbamoyl)benzoic acid (HMTA) was efficiently synthesized and successfully applied as an additive to several types of blank lubricant oils. Initially, HMTA self-assembles to fibrous structures and traps blank lubricant oils to form gel lubricants. The prepared gel lubricants show thermo-reversible properties and enhanced lubricating performance by 3∼5-fold. X-ray photoelectron spectrometry of the metal surface and the quartz crystal microbalance illustrated that there are no obvious interactions between HMTA and the metal surface. The results of Fourier transform infrared spectroscopy and X-ray diffraction further confirm that inter/intro-molecular H-bonding interactions are the main driving force for the self-healing of HMTA. Finally, molecular dynamics (MD) simulations show that the number of noncovalent H-bonding interactions fluctuates with time, and this highly dynamic H-bonding network could regulate the self-assembly process and result in the self-healing property of the HMTA organogel, which is consistent with the results of the step-strain tests. Especially, the Hirshfeld independent gradient model method at the quantum level demonstrated that C8/C9 aromatics of 500SN have strong π-π stacking interactions with the aromatic heads of HMTA and van der Waals interactions with the hydrophobic tails of HMTA, which disrupt the self-assembly behavior of the 500SN model. Therefore, the calculation studies offer a rational explanation for the superior lubricant property of the PAO10 gel as compared to that for 500SN.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Wannian Zhang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Na Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Dianwen Hu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
| | - Fang Yu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Yu-Peng He
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| |
Collapse
|
19
|
Wang Y, Liu C, Fu K, Liang J, Pang S, Liu G. Multiple chirality inversion of pyridine Schiff-base cholesterol-based metal-organic supramolecular polymers. Chem Commun (Camb) 2022; 58:9520-9523. [PMID: 35924492 DOI: 10.1039/d2cc02680e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on a metal coordination driven co-assembly strategy, a metal-organic supramolecular polymer system of pyridine Schiff-base cholesterol and metal ions with multiple supramolecular chirality inversion was successfully achieved by the stoichiometry and exchange of metal ions (such as Co2+, Ni2+, Cu2+, Zn2+, and Ag+), as well as the solvent polarity.
Collapse
Affiliation(s)
- Yanbin Wang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Chongtao Liu
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China. .,Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Kuo Fu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Junxi Liang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Shaofeng Pang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Guofeng Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
20
|
Liu Z, Yao Y, Tao X, Wei J, Lin S. Helical supramolecular nanorods via sequential meticulous tailoring of noncovalent interaction and light irradiation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Zhang Y, Ding Z, Ma Y, Jiang S. Morphology-dependent photoresponsive behaviors of a self-assembled system based on a single cyanostilbene derivative. SOFT MATTER 2022; 18:5850-5856. [PMID: 35904072 DOI: 10.1039/d2sm00691j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, photoresponsive supramolecular self-assemblies have shown great potential in various fields. However, it is still a great challenge to integrate and control multiple photoresponsive behaviors in a self-assembled system. Herein, we design a novel cyanostilbene-based molecule VOE. In the aggregated state, it has different photoresponsive behaviors under different morphologies. When VOE molecules are dispersed in a 70% H2O/THF mixture, two different assembly morphologies are obtained as the aging time changes. One is weakly emissive nanoparticles with amorphous packing arrangements, and the other is highly emissive microbelts with well-ordered stacking modes. When they are irradiated with blue light (420 nm), the disordered assembly structure of nanoparticles leads to a [2+2] cycloaddition reaction, while a Z/E isomerization reaction occurs in ordered packed microbelts. Therefore, we can use a self-assembled system to generate two different morphologies, enabling completely different emissions and photoresponsive behaviors.
Collapse
Affiliation(s)
- Yangdaiyi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yao Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
22
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co-assembly Polymers. Angew Chem Int Ed Engl 2022; 61:e202202718. [PMID: 35318788 DOI: 10.1002/anie.202202718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/09/2022]
Abstract
Two chiral binaphthyl polymers (R/S-P1 and R/S-P2) with different dihedral angles of the binaphthyl moiety were chosen as chiral inducers to construct chiral co-assemblies with an achiral pyrene-naphthalimide dye (NPy) and then acted as the emitting layer (EML) of circularly polarized electroluminescence (CP-EL) devices. The anchored dihedral angle of R/S-P2 not only exhibited the enhanced chirality signal, but also had a strong chirality-inducing effect on the achiral NPy dye in the chiral co-assembly (R/S-P2)0.6 -(NPy)0.4 . After annealing at 120 °C, the CPL signal (|gem |) of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 was amplified to 5.6×10-2 , which was about 6-fold larger than that of (R/S-P1)0.6 -(NPy)0.4 . The amplified gem value of (R/S-P2)0.6 -(NPy)0.4 was due to the formation of a helical co-assembly through the strong π-π stacking interaction between the R/S-P2 and the achiral NPy. This kind of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 acted as the EML of CP-OLEDs, and achieved an excellent CP-EL performance (|gEL |=4.8×10-2 ).
Collapse
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
23
|
Stoichiometric Ratio Controlled Dimension Transition and Supramolecular Chirality Enhancement in a Two-Component Assembly System. Gels 2022; 8:gels8050269. [PMID: 35621567 PMCID: PMC9140661 DOI: 10.3390/gels8050269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
To control the dimension of the supramolecular system was of great significance. We construct a two component self-assembly system, in which the gelator LHC18 and achiral azobenzene carboxylic acid could co-assembly and form gels. By modulating the stoichiometric ratio of the two components, not only the morphology could be transformed from 1D nanaotube to 0D nanospheres but also the supramolecualr chirality could be tuned. This work could provide some insights to the control of dimension and the supramolecular chirality in the two-component systems by simply modulating the stoichiometric ratio.
Collapse
|
24
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co‐assembly Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Zhao J, Wang B, Hao A, Xing P. Arene-perfluoroarene interaction induced chiroptical inversion and precise ee% detection of chiral acids in a benzimidazole-involved ternary coassembly. NANOSCALE 2022; 14:1779-1786. [PMID: 35029251 DOI: 10.1039/d1nr06254a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible regulation of chirality and handedness of chiral functional materials and quantitative sensing of natural chiral compounds remains a considerable challenge. Herein, an achiral fluorescent 1-pyrenecarboxylic acid-benzimidazole derivative (PBI) was synthesized and its chiroptical properties upon coassembly with chiral acids (TA and MA) and octafluoronaphthalene (OFN) through hydrogen bonds between benzimidazole and chiral acids as well as an arene-perfluoroarene (AP) interaction between a pyrene moiety and OFN were systemically studied. The binary assemblies of PBI/TA and PBI/MA displayed opposite chiroptical properties including circular dichroism (CD) and circularly polarized luminescence (CPL) signals. Interestingly, the handedness of CPL was further inverted in ternary assemblies due to the synergistic effect of the AP interaction and hydrogen bonds. Besides, the highly accurate chiral sensing of chiral acids via binary assemblies was successfully achieved with a high correlation coefficient. This work provides a simple method for regulating the handedness of chiroptical active materials and quantitative sensing of chiral acids through orthogonal multiple component coassemblies.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
26
|
Li M, Liu M, Sha Y. Induced and Inversed Circularly Polarized Luminescence of Achiral Thioflavin T Assembled on Peptide Fibril. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106130. [PMID: 34881501 DOI: 10.1002/smll.202106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Chiroptical inversion of amyloid fibrils is a novel phenomenon and is of fundamental importance; however, the underlying structural basis remains poorly understood. Here, the co-assembly of Thioflavin T (ThT) with T1 amyloid fibril and the induced supramolecular chirality is investigated by induced circular dichroism (ICD) and circularly polarized luminescence (CPL), followed by direct morphological helicity observation of the fibril by an atomic force microscope (AFM). ThT exhibits negative ICD and CPL when assembled on the left-handed T1 fibril. Interestingly, when ThT dynamically interacts with the T1 fibril, the left-handed fibril partially converts into right-handed, accompanied with the inversion of CD and CPL signals. These results indicate that the morphological helicity of template fibril cannot be arbitrarily distinguished by the sign of chiroptical spectra of the dye/peptide assemblies.
Collapse
Affiliation(s)
- Meijun Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Minghua Liu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlin Sha
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
27
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Saha R, Bhattacharjee S. Coiled‐Coil Helical Nano‐Assemblies: Shape Persistent, Thixotropic, and Tunable Chiroptical Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN, Sector V, Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur- 732103 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
28
|
Ding J, Pan H, Wang H, Ren XK, Chen Z. Asymmetric living supramolecular polymerization of an achiral aza-BODIPY dye by solvent-mediated chirality induction and memory. Org Chem Front 2022. [DOI: 10.1039/d2qo00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic self-assembly properties of an achiral aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was investigated in detail in chiral solvents (S)- and (R)-limonene by...
Collapse
|