1
|
Turkulets Y, Shauloff N, Chaulker OH, Jelinek R, Shalish I. Physics and chemistry of nitrogen dioxide (NO 2) adsorption on gallium nitride (GaN) surface and its interaction with the yellow-luminescence-associated surface state. J Colloid Interface Sci 2025; 678:789-795. [PMID: 39312867 DOI: 10.1016/j.jcis.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Surface states have been a longstanding and sometimes underestimated problem in gallium nitride (GaN) based devices. The instability caused by surface-charge-trapping in GaN-based transistors is practically the same problem faced by the inventors of the silicon (Si) field effect transistors more than half a century ago. Although in Si this problem was eventually solved by oxygen and hydrogen-based passivation, in GaN, such breakthrough has yet to be made. Apparently, some of this surface charge originates in molecules adsorbed on its surface. Here, it is shown that the charge density associated with the GaN yellow band desorbs upon mild heat treatment in vacuum and re-adsorbs on exposure to the air. Selective exposure of GaN to nitrogen dioxide (NO2) reproduces this surface charge to its original distribution, as does exposure to air. Residual gas analysis of the gases desorbed during heat treatment shows a large concentration of nitric oxide (NO). These observations suggest that selective adsorption of NO2 is responsible for the surface charge that deleteriously affects the electrical properties of GaN. The physics and chemistry of this NO2 adsorption, reported here, may open a new path in the search for passivation to improve GaN device reliability.
Collapse
Affiliation(s)
- Yury Turkulets
- School of Electrical and Computer Engineering, Ben Gurion University, Ben Gurion Ave. 1, Beer Sheva 8410501, Israel
| | - Nitzan Shauloff
- Department of Chemistry, Ben Gurion University, Ben Gurion Ave. 1, Beer Sheva 8410501, Israel
| | - Or Haim Chaulker
- School of Electrical and Computer Engineering, Ben Gurion University, Ben Gurion Ave. 1, Beer Sheva 8410501, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University, Ben Gurion Ave. 1, Beer Sheva 8410501, Israel
| | - Ilan Shalish
- School of Electrical and Computer Engineering, Ben Gurion University, Ben Gurion Ave. 1, Beer Sheva 8410501, Israel.
| |
Collapse
|
2
|
Li H, Chen Y, Zhou W, Yang G, Xie T, Li Q, Huang J, Liu C, Xing X. High-sensitivity NO 2 fluorescence sensor based on a QDs@Aerogels/SM composite nanofilm. OPTICS LETTERS 2024; 49:6381-6384. [PMID: 39546674 DOI: 10.1364/ol.529773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 11/17/2024]
Abstract
Quantum dots (QDs) exhibit excellent optical and chemical properties, making them advantageous for fluorescence sensing. However, gas sensor using QDs is often hampered by challenges such as gas diffusion and low concentration. This work describes the development of a nitrogen dioxide (NO2) fluorescence gas sensor that utilizes a QDs@Aerogels/SM composite nanofilm containing CdTe QDs modified by reduced glutathione (GSH), silica microspheres (SMs), and silica aerogel. The SM and porous aerogels create a uniform porous structure that enhances the distribution of QDs. Compared to the pure QDs film, the QDs@Aerogels/SM composite film exhibits enhanced fluorescence intensity. The porous structure promotes the adsorption of NO2, which improves the detection sensitivity. The QDs@Aerogels/SM composite film was applied in a portable gas sensor. The sensor demonstrates a good linear response to NO2 gas in the range of 0-10 ppm, with an ultra-low detection limit of 0.096 ppm and high selectivity. The uniform distribution of aerogel and SM enhances the stability of the composite nanofilm, and the fluorescence of the films remains virtually unchanged over a period of 60 days which ensures its optimal performance over extended periods of use. The fluorescent NO2 sensor demonstrated selective and sensitive quenching upon exposure to NO2, making it ideal for environmental monitoring and further applications.
Collapse
|
3
|
Thota C, Gangadhara C, Radhalayam D, Singiri R, Bak NH, Kondaiah P, Ningappa C, Maddaka R, Kim MD. CuO nanostructure-decorated InGaN nanorods for selective H 2S gas detection. Phys Chem Chem Phys 2024; 26:15530-15538. [PMID: 38752997 DOI: 10.1039/d3cp06318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Establishing a heterostructure is one of the adequate strategies for enhancing device performance and has been explored in sensing, and energy applications. In this study, we constructed a heterostructure through a two-step process involving hydrothermal synthesis of CuO nanostructures and subsequent spin coating on MBE-grown InGaN NRs. We found that the CuO content on the InGaN NRs has a great impact on carrier injection at the heterojunction and thus the H2S gas sensing performance. Popcorn CuO/InGaN NR shows excellent gas sensing performance towards different concentrations of H2S at room temperature. The highest response is up to 35.54% to a H2S concentration of 100 ppm. Even more significantly, this response is further enhanced significantly (123.70%) under 365 nm UV light. In contrast, this composite structure exhibits negligibly low responses to 100 ppm of NO2, H2, CO, and NH3. The heterostructure band model associated with a surface reaction model is manifested to elucidate the sensing mechanism.
Collapse
Affiliation(s)
- Chandrakalavathi Thota
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - C Gangadhara
- Department of Physics, The Visveswaraya Technological University, Belgavi 590018, India
| | - Dhanalakshmi Radhalayam
- Energy Storage and Conversion Laboratory, Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ramu Singiri
- Department of Electronic Engineering, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Na-Hyun Bak
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Paruchuri Kondaiah
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia - 24061, USA
| | - C Ningappa
- Department of Physics, The Visveswaraya Technological University, Belgavi 590018, India
| | - Reddeppa Maddaka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Moon-Deock Kim
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Ganesh Moorthy S, Bouvet M. Effects of Visible Light on Gas Sensors: From Inorganic Resistors to Molecular Material-Based Heterojunctions. SENSORS (BASEL, SWITZERLAND) 2024; 24:1571. [PMID: 38475107 DOI: 10.3390/s24051571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, many research works have been focused on enhancing the properties of gas sensors by utilising external triggers like temperature and light. Most interestingly, the light-activated gas sensors show promising results, particularly using visible light as an external trigger that lowers the power consumption as well as improves the stability, sensitivity and safety of the sensors. It effectively eliminates the possible damage to sensing material caused by high operating temperature or high energy light. This review summarises the effect of visible light illumination on both chemoresistors and heterostructure gas sensors based on inorganic and organic materials and provides a clear understanding of the involved phenomena. Finally, the fascinating concept of ambipolar gas sensors is presented, which utilised visible light as an external trigger for inversion in the nature of majority charge carriers in devices. This review should offer insight into the current technologies and offer a new perspective towards future development utilising visible light in light-assisted gas sensors.
Collapse
Affiliation(s)
- Sujithkumar Ganesh Moorthy
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon CEDEX, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon CEDEX, France
| |
Collapse
|
5
|
Xu M, Xu Z, Sun Z, Chen W, Wang L, Liu Y, Wang Y, Du X, Pan S. Surface Engineering in SnO 2/Si for High-Performance Broadband Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3664-3672. [PMID: 36598173 DOI: 10.1021/acsami.2c20073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silicon-based photodetectors are important optoelectronic devices in many fields. Many investigations have been conducted to improve the performance of silicon-based photodetectors, such as spectral responsivity and sensitivity in the ultraviolet band. In this study, we combine the surface structure engineering of silicon with wide-bandgap semiconductor SnO2 films to realize textured Si-based heterojunction photodetectors. The obtained SnO2/T-Si photodetectors exhibit high responsivity ranging from ultraviolet to near-infrared light. Under a bias voltage of 1 V, SnO2/T-Si photodetectors (PDs) with an inverted pyramid texture show the best performance, and the typical responsivities to ultraviolet, visible, and near-infrared light are 0.512, 0.538, 1.88 (800 nm, 67.7 μW/cm2) A/W@1 V, respectively. The photodetectors exhibit short rise and decay times of 18.07 and 29.16 ms, respectively. Our results demonstrate that SnO2/T-Si can serve as a high-performance broadband photodetector.
Collapse
Affiliation(s)
- Miao Xu
- Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou510006, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
| | - Zhihao Xu
- Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou510006, People's Republic of China
- Huangpu Research & Graduate School of Guangzhou University, Sino-Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou510555, People's Republic of China
| | - Zongheng Sun
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Wei Chen
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Linqiang Wang
- Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou510006, People's Republic of China
- Huangpu Research & Graduate School of Guangzhou University, Sino-Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou510555, People's Republic of China
| | - Yaoping Liu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yan Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Xiaolong Du
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Shusheng Pan
- Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou510006, People's Republic of China
- Huangpu Research & Graduate School of Guangzhou University, Sino-Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou510555, People's Republic of China
| |
Collapse
|
6
|
Zhang B, Wang J, Wei Q, Yu P, Zhang S, Xu Y, Dong Y, Ni Y, Ao J, Xia Y. Visible Light-Induced Room-Temperature Formaldehyde Gas Sensor Based on Porous Three-Dimensional ZnO Nanorod Clusters with Rich Oxygen Vacancies. ACS OMEGA 2022; 7:22861-22871. [PMID: 35811897 PMCID: PMC9260931 DOI: 10.1021/acsomega.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Oxygen vacancy (VO) is a kind of primary point defect that extensively exists in semiconductor metal oxides (SMOs). Owing to some of its inherent qualities, an artificial manipulation of VO content in one material has evolved into a hot research field, which is deemed to be capable of modulating band structures and surface characteristics of SMOs. Specific to the gas-sensing area, VO engineering of sensing materials has become an effective means in enhancing sensor response and inducing light-enhanced sensing. In this work, a high-efficiency microwave hydrothermal treatment was utilized to prepare a VO-rich ZnO sample without additional reagents. The X-ray photoelectron spectroscopy test revealed a significant increase in VO proportion, which was from 9.21% in commercial ZnO to 36.27% in synthesized VO-rich ZnO possessing three-dimensional and air-permeable microstructures. The subsequent UV-vis-NIR absorption and photoluminescence spectroscopy indicated an extension absorption in the visible region and band gap reduction of VO-rich ZnO. It turned out that the VO-rich ZnO-based sensor exhibited a considerable response of 63% toward 1 ppm HCHO at room temperature (RT, 25 °C) under visible light irradiation. Particularly, the response/recovery time was only 32/20 s for 1 ppm HCHO and further shortened to 10/5 s for 10 ppm HCHO, which was an excellent performance and comparable to most sensors working at high temperatures. The results in this work strongly suggested the availability of VO engineering and also provided a meaningful candidate for researchers to develop high-performance RT sensors detecting volatile organic compounds.
Collapse
Affiliation(s)
- Bo Zhang
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wang
- Key
Laboratory of Synthetic and Biological Colloids (Ministry of Education),
School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qufu Wei
- Key
Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Pingping Yu
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuai Zhang
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yin Xu
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yue Dong
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi Ni
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jinping Ao
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi Xia
- Research
Center for Analysis and Measurement, Kunming
University of Science and Technology, and Analytic & Testing Research
Center of Yunnan, Kunming 650093, China
| |
Collapse
|