1
|
Cui Y, Gao L, Ying C, Tian J, Liu Z. Two-Dimensional Material-Based Nanofluidic Devices and Their Applications. ACS NANO 2025; 19:1911-1943. [PMID: 39783262 DOI: 10.1021/acsnano.4c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids. Their ultrathin structure and photothermoelectric response make it possible to achieve the scale control, friction limitation, and regulatory response, all of which are challenging to achieve with traditional solid materials. In this review, we provide a comprehensive overview of the preparation methods and corresponding structures of three types of 2D material-based nanofluidic devices, including nanopores, nanochannels, and membranes. We highlight their applications and recent advances in exploring physical mechanisms, detecting biomolecules (DNA, protein), developing iontronics devices, improving ion/gas selectivity, and generating osmotic energy. We discuss the challenges facing 2D material-based nanofluidic devices and the prospects for future advancements in this field.
Collapse
Affiliation(s)
- Yangjun Cui
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Long Gao
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Cuifeng Ying
- Advanced Optics & Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
| | - Zhibo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Torres-Cavanillas R, Forment-Aliaga A. Design of stimuli-responsive transition metal dichalcogenides. Commun Chem 2024; 7:241. [PMID: 39462088 PMCID: PMC11513992 DOI: 10.1038/s42004-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Stimuli-responsive systems are an emerging class of materials in fields as diverse as electronics, optoelectronics, cancer detection, drug delivery, or sensing. Especially focusing on nanomaterials, 2D transition metal dichalcogenides have recently attracted the scientific community's attention due to their remarkable intrinsic stimuli-responsive behaviour upon external stimuli such as pH, light, voltage, or certain pathogens. This significant response can be further enhanced by forming mixed-dimensional heterostructures and by molecular functionalization, capitalizing on chemistry to manipulate and boost their intrinsic stimuli-responsive properties. Furthermore, thanks to the endless possibilities of chemistry, a new class of smart materials based on the combination of stimuli-responsive molecular systems with transition metal dichalcogenides has recently been synthesized. In these materials, the physical properties of the 2D layers are reversibly modified by the switchable molecules, not only enhancing their stimuli-responsive behaviour but also providing memory to the hybrid. Therefore, this review explores the recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness.
Collapse
Affiliation(s)
- Ramon Torres-Cavanillas
- Department of Materials, Oxford University, 21 Banbury Road, OX2 6NN, Oxford, UK.
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Alicia Forment-Aliaga
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
3
|
Verma AK, Sharma BB. Impact of Atomic Defects on Water Contact Angle of 2D Molybdenum Disulfide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39267215 DOI: 10.1021/acs.langmuir.4c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Interfacial dynamics within nanofluidic systems are crucial for applications like water desalination and osmotic energy harvesting. Understanding these dynamics can inform the rational optimization of two-dimensional (2D) materials and devices for such applications. This study explores the wetting behavior of realistic 2D MoS2 surfaces incorporating vacancies and atomic steps, known as atomic defects. We employ a combined density functional theory (DFT) and molecular dynamics (MD) computational approach to elucidate the influence of atomic defects on the MoS2-water interface. DFT calculations are utilized to determine the charge distribution within MoS2. Subsequently, free energy calculations are obtained through MD simulations of the MoS2-water interface. Our findings underscore the importance of incorporating atomic defects into MoS2 surfaces for accurate water contact angle (WCA) predictions in nanofluidic simulations, particularly when using Abal et al. force field parameters. However, the force field developed by Liu et al. yielded more accurate results for pristine MoS2 surfaces. While these parameters provide reliable outcomes for pristine MoS2 surfaces, their application to surfaces with defects may lead to underestimation of WCA. This highlights the critical need for realistic surface representations in nanofluidic modeling to accurately capture the complex interactions between water and MoS2 materials.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
4
|
Zhou M, Jin X, Jia M, Quan D, Liu B, Wei Y, Kong XY, Wen L, Jiang L. Light-Powered Directional Ion Transport via PFN-Br/MoS 2 Heterogeneous Membranes: Band Alignment and Activation Energy Barrier Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39321-39329. [PMID: 39024512 DOI: 10.1021/acsami.4c05901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Quan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Zhou M, Zhang P, Zhang M, Jin X, Zhang Y, Liu B, Quan D, Jia M, Zhang Z, Zhang Z, Kong XY, Jiang L. Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS 2 with PEDOT:PSS and PDINN. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308277. [PMID: 38044301 DOI: 10.1002/smll.202308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| |
Collapse
|
6
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
7
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
8
|
Ranjan P, Gaur S, Yadav H, Urgunde AB, Singh V, Patel A, Vishwakarma K, Kalirawana D, Gupta R, Kumar P. 2D materials: increscent quantum flatland with immense potential for applications. NANO CONVERGENCE 2022; 9:26. [PMID: 35666392 PMCID: PMC9170864 DOI: 10.1186/s40580-022-00317-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 05/08/2023]
Abstract
Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young's moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Snehraj Gaur
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Himanshu Yadav
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ajay B Urgunde
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Vikas Singh
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Avit Patel
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Kusum Vishwakarma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Deepak Kalirawana
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India.
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
9
|
Yang L, Zhang F, Chen C, Liu Z, Liu L, Li H. An Ultraviolet/Visible Light Regulated Protein Transport Gate Constructed by Pillar[6]arene-based Host-Guest System. Chem Asian J 2022; 17:e202200455. [PMID: 35532204 DOI: 10.1002/asia.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Indexed: 11/08/2022]
Abstract
Protein transport is an interesting and intrinsic life feature that is highly relevant to physiology and disease in living beings. Herein, inspired by nature, based on the supramolecular host-guest interaction, we have introduced the classical azobenzene light switches and L-phenylalanine derived pillar[6]arene (L-Phe-P6) into the artificial nanochannel to construct light-responsive nanochannels that could regulate protein transport effectively under the control of ultraviolet (UV) and visible (Vis) light. The light-controlled distribution of L-Phe-P6 in the channel led to the difference in surface charges in the nanochannel, which eventually brought the difference in protein transport. This research may not only provide a convenient theoretical model for biological research, but also a flexible light-responsive protein transport model, which will play a crucial role in light-controlled release of protein drugs and so on.
Collapse
Affiliation(s)
- Lei Yang
- Central China Normal University, College of Chmistry, CHINA
| | - Fan Zhang
- Hubei University, College of Chemistry and Chemical Engineering, CHINA
| | - Chunxiu Chen
- Central China Normal University, College of Chemistry, CHINA
| | - Zhisheng Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Lu Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Haibing Li
- Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA
| |
Collapse
|
10
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|