1
|
Cui L, Hu C, Wang W, Zheng J, Zhu Z, Liu B. An adhesive, stretchable, and freeze-resistant conductive hydrogel strain sensor for handwriting recognition and depth motion monitoring. J Colloid Interface Sci 2025; 677:273-281. [PMID: 39094488 DOI: 10.1016/j.jcis.2024.07.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Wearable electronics based on conductive hydrogels (CHs) offer remarkable flexibility, conductivity, and versatility. However, the flexibility, adhesiveness, and conductivity of traditional CHs deteriorate when they freeze, thereby limiting their utility in challenging environments. In this work, we introduce a PHEA-NaSS/G hydrogel that can be conveniently fabricated into a freeze-resistant conductive hydrogel by weakening the hydrogen bonds between water molecules. This is achieved through the synergistic interaction between the charged polar end group (-SO3-) and the glycerol-water binary solvent system. The conductive hydrogel is simultaneously endowed with tunable mechanical properties and conductive pathways by the modulation caused by varying material compositions. Due to the uniform interconnectivity of the network structure resulting from strong intermolecular interactions and the enhancement effect of charged polar end-groups, the resulting hydrogel exhibits 174 kPa tensile strength, 2105 % tensile strain, and excellent sensing ability (GF = 2.86, response time: 121 ms), and the sensor is well suited for repeatable and stable monitoring of human motion. Additionally, using the Full Convolutional Network (FCN) algorithm, the sensor can be used to recognize English letter handwriting with an accuracy of 96.4 %. This hydrogel strain sensor provides a simple method for creating multi-functional electronic devices, with significant potential in the fields of multifunctional electronics such as soft robotics, health monitoring, and human-computer interaction.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile & Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
2
|
Zhou X, Liu H, Yu Z, Yu H, Meng D, Zhu L, Li H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci 2024; 670:1-11. [PMID: 38749378 DOI: 10.1016/j.jcis.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
3
|
Lu Y, Li Z, Li Z, Zhou S, Zhang N, Zhang J, Zong L. Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification. NANOSCALE 2024; 16:645-656. [PMID: 38088254 DOI: 10.1039/d3nr05049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Adhesive hydrogels (AHs) are considered ideal materials for flexible sensors. However, the lack of effective energy dissipation networks and sparse surface polar groups in AHs lead to poor mechanical properties and interfacial adhesion, which limit their practical application. Herein, a tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH was obtained by the in situ polymerization of highly carboxylated cellulose nanocrystals (SCNCPA, surface pre-grafted polyacrylic acid chains, C-COOH = 11.5 mmol g-1) with the acrylic acid precursor. The unique tacticity of SCNCPA provides strong interface entanglement and multiple hydrogen bonds with the PACPH network, which further increases the energy dissipated during SCNCPA displacements, and enhances the mechanical properties of PACPH (tensile strength = 1.45 MPa, modulus = 332 kPa, and fracture toughness = 13.2 MJ m-3). Meanwhile, SCNCPA increases the density of surface polar groups in PAPCH and also acts as an anchor point to improve the adhesion strength (>2-3 times) of PACPH on various substrates. The combination of excellent mechanical, adhesive, and conductive properties of the PAPCH-integrated patches enables long-term monitoring of human daily activities and electrocardiogram (ECG) signals, verifying that PAPCH is a promising material platform for the further development of flexible sensors and other health management devices.
Collapse
Affiliation(s)
- Yunjie Lu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Zhaohui Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Zewei Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Shihao Zhou
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Ning Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Lu Zong
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| |
Collapse
|
4
|
Zeng LY, Wang XC, Wen Y, Chen HM, Ni HL, Yu WH, Bai YF, Zhao KQ, Hu P. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors. Carbohydr Polym 2023; 300:120229. [DOI: 10.1016/j.carbpol.2022.120229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
5
|
Liang Y, Ding Q, Wang H, Wu Z, Li J, Li Z, Tao K, Gui X, Wu J. Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring. NANO-MICRO LETTERS 2022; 14:183. [PMID: 36094761 PMCID: PMC9468213 DOI: 10.1007/s40820-022-00934-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 05/31/2023]
Abstract
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors. However, traditional humidity sensors suffer from a trade-off between deformability, sensitivity, and transparency, and thus the development of high-performance, stretchable, and low-cost humidity sensors is urgently needed as wearable electronics. Here, ultrasensitive, highly deformable, and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels. Concomitantly, a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area, which can be applied to different polymer networks and facilitate the development of flexible integrated electronics. In addition, sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network, exhibiting excellent water adsorption capacity. Through the synergistic optimization of structure and composition, the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH, which is unprecedented. Moreover, the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity. As a proof of concept, we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission, enabling real-time monitoring of human health status. This work provides a general strategy to construct high-performance, stretchable, and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
Collapse
Affiliation(s)
- Yuning Liang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Wang H, Rong C, You J, Li Y. Enhancement of strength and toughness of bio-nanocomposites with good transparency and heat resistance by reactive processing. iScience 2022; 25:104560. [PMID: 35769885 PMCID: PMC9234255 DOI: 10.1016/j.isci.2022.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Growing concerns in addressing environmental challenges are driving the rapid advancement of both bio-based and environmental friendly materials. Biodegradable polymers have been compounded with various nanofillers to fulfill the multiple requirements in real applications. However, current technologies remain to be improved in terms of the intrinsic inferior performance and the lack of interfacial interactions. In this work, we employed a facile route to develop bio-nanocomposites integrating multiple functionalities by reactive processing of polylactide and reactive boehmite nanorods. The grafting of polymer chains onto the surface of the nanorods encourages fully homogeneous dispersion of nanofillers with even 30 wt% loadings. Such nanocomposites exhibit simultaneously enhanced tensile strength, modulus, ductility, and impact strength. Moreover, the bio-based nanocomposites present promising features such as high transparency, improved flame resistance, and heat resistance. This work demonstrates exciting opportunities to produce bio-plastics with diverse functionalities in versatile applications of sustainable packaging industry and engineering plastics.
Collapse
Affiliation(s)
- Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
- Corresponding author
| |
Collapse
|
7
|
Equilibrium Swelling of Thermo-Responsive Gels in Mixtures of Solvents. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thermo-responsive (TR) gels of the LCST (lower critical solution temperature) type swell in water at temperatures below their volume phase transition temperature Tc and collapse above the critical temperature. When water is partially replaced with an organic liquid, these materials demonstrate three different types of equilibrium solvent uptake diagrams at temperatures below, above, in the close vicinity of Tc. A model is developed for equilibrium swelling of TR gels in binary mixtures of solvents. It takes into account three types of phase transitions in TR gels driven by (i) aggregation of hydrophobic side groups into clusters from which solvent molecules are expelled, (ii) replacement of water with cosolvent molecules in cage-like structures surrounding these groups, and (iii) replacement of water with cosolvent as the main element of hydration shells around backbone chains. The model involves a relatively small number of material constants that are found by matching observations on covalently cross-linked poly(N-isopropylacrylamide) macroscopic gels and microgels. Good agreement is demonstrated between the experimental data and results of numerical analysis. Classification is provided of the phase transition points on equilibrium swelling diagrams.
Collapse
|
8
|
Liu G, Guo M, Xue S, Yang X, Wang L, Zhao C, Xiang D, Li H, Lai J, Li Z, Wu Y. Stretchable, conductive poly(acrylamide‐
co
‐maleic acid)/triethylene glycol/
NaCl
double‐crosslinked organohydrogel with excellent antifreezing and sensing properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanfei Liu
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Meiling Guo
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Shishan Xue
- School of Chemistry and Chemical Engineering Mianyang Normal University Mianyang China
| | - Xi Yang
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Chuanxia Zhao
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| |
Collapse
|
9
|
Park J, Yu Y, Lee JW, Kim BS. Anionic Ring-Opening Polymerization of a Functional Epoxide Monomer with an Oxazoline Protecting Group for the Synthesis of Polyethers with Carboxylic Acid Pendants. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jihye Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeji Yu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Won Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
11
|
Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Xu H, Jiang X, Yang K, Ren J, Zhai Y, Han X, Cai H, Gao F. Conductive and eco-friendly gluten/MXene composite organohydrogels for flexible, adhesive, and low-temperature tolerant epidermal strain sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|