1
|
Liu C, Chu X, Pi Y, Dong C, Lei Y, Yao W, Zhang B, Li Z, Wang X, Cheng P. Mo 2C coated with Ni nanoparticles as the cathode catalyst towards efficient hydrogen evolution reaction: an experimental and computational investigation. Phys Chem Chem Phys 2024; 26:22656-22664. [PMID: 39158723 DOI: 10.1039/d4cp02356k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Although Mo2C and earth-abundant 3d transition metals are regarded as potential catalysts to replace noble metal catalysts for effective hydrogen evolution reaction, their large-scale application is still inhibited by their own defects. Here, a facile thermal treatment method for nonprecious metal catalysts is developed to prepare a porous Ni/Mo2C composite catalyst. The loading density of Ni nanoparticles on the Mo2C surface has an important effect on the activity of the catalyst. By optimizing the Ni doping ratio, the Ni-40/Mo2C-17 sample exhibits the lowest onset overpotential and lowest overpotential at 10 mA cm-2 in both acidic and alkaline electrolytes, compared to other reported Ni- and Mo2C-based catalysts. In addition, theoretical calculations have also confirmed the synergistic effect between Ni nanoparticles and Mo2C, which can balance the thermodynamics between H adsorption and desorption of H2. This work provides an avenue for designing high-performance water-splitting catalytic materials using low-cost species, which exhibit excellent HER activity in a wide pH range.
Collapse
Affiliation(s)
- Chuan Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, P. R. China
| | - Xin Chu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Yingqi Pi
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Chunshan Dong
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Yuhan Lei
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Wanwan Yao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Bentian Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
| | - Zirong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, P. R. China
| | - Xuchun Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, P. R. China.
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, P. R. China
| | - Ping Cheng
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, P. R. China
- College of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Liu S, Wang N, Liu G, Yang S, Li C, Zhou Y, He H, Chen Y, Thummavichaia K, Zhu Y. In situ synthesis of tentacle-like NiC/Mo 2C/NF nanorods array with excellent hydrogen evolution reaction at high current densities. J Colloid Interface Sci 2024; 661:606-613. [PMID: 38310769 DOI: 10.1016/j.jcis.2024.01.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
The problem limiting the use of hydrogen evolution reactions in industry is the inability of electrocatalysts to operate stably at high current densities, so the development of stable and efficient electrocatalysts is important for hydrogen production by water splitting. By designing a rational interface engineering not only can the problem of limited number of catalytic sites in the catalyst be solved, but also can facilitate electron transfer, thus enhancing the efficiency of water splitting. Here, we designed a two-stage chemical vapour deposition method to construct NiC/Mo2C nanorod arrays on nickel foam to enhance the electrocatalytic ability of the catalysts, which exhibited efficient HER catalytic activity due to their special tentacle-like nanorod structure and abundant heterogeneous junction surfaces, which brought about abundant active sites as well as promoted electron transfer capability. The resulting catalysts provide current densities of 10, 100 and 500 mA cm-2 with overpotentials of 31, 153 and 264 mV, and exhibit excellent stability at current densities of 10 mA cm-2 for 200 h. This discovery provides a new idea for the rational design of catalysts with special morphologies.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Guangsheng Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shiming Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chen Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Zhou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huan He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, United Kingdom
| | - Kunyapat Thummavichaia
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Chen W, Qin Z, Wang ZM. Heterometal doping on nickel selenide corrugations for solar-assisted electrocatalytic hydrogen evolution. Dalton Trans 2022; 51:15507-15514. [PMID: 36165211 DOI: 10.1039/d2dt02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique electronic structure as a semiconductor with good electrocatalytic activity. Herein, we prepare Co-doped NiSe (Ni1-xCoxSe) with a structure of uniform corrugations by one-step chemical vapor deposition. For comparison, Fe-doped NiSe (Ni1-xFexSe) and NiSe are also prepared using the same method. In alkaline electrolyte, Ni1-xCoxSe shows great HER performance in terms of low overpotential (93 mV@10 mA cm-2 and 140 mV@50 mA cm-2) and long-term stability. Moreover, with the assistance of solar energy, the overpotential needed for Ni1-xCoxSe is reduced, making Ni1-xCoxSe better than most reported NiSe-based HER catalysts. On the other hand, the current density of Ni1-xCoxSe is 13 mA cm-2@93 mV and 63 mA cm-2@140 mV with illumination, which is 30% and 26% higher than that without solar illumination assistance, respectively. Therefore, we believe that inducing sunlight to electrocatalytic hydrogen evolution in water splitting could be a supplementary footprint toward the utilization of solar energy.
Collapse
Affiliation(s)
- Weiwu Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhaojun Qin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Zhiming M Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China. .,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
Yang TT, Wang A, House SD, Yang J, Lee JK, Saidi WA. Computationally Guided Design to Accelerate Discovery of Doped β-Mo 2C Catalysts toward Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy T. Yang
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anqi Wang
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen D. House
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Judith Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jung-Kun Lee
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wissam A. Saidi
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Zhang X, Hua S, Lai L, Wang Z, Liao T, He L, Tang H, Wan X. Strategies to improve electrocatalytic performance of MoS 2-based catalysts for hydrogen evolution reactions. RSC Adv 2022; 12:17959-17983. [PMID: 35765324 PMCID: PMC9204562 DOI: 10.1039/d2ra03066g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Electrocatalytic hydrogen evolution reactions (HERs) are a key process for hydrogen production for clean energy applications. HERs have unique advantages in terms of energy efficiency and product separation compared to other methods. Molybdenum disulfide (MoS2) has attracted extensive attention as a potential HER catalyst because of its high electrocatalytic activity. However, the HER performance of MoS2 needs to be improved to make it competitive with conventional Pt-based catalysts. Herein, we summarize three typical strategies for promoting the HER performance, i.e., defect engineering, heterostructure formation, and heteroatom doping. We also summarize the computational density functional theory (DFT) methods used to obtain insight that can guide the construction of MoS2-based materials. Additionally, the challenges and prospects of MoS2-based catalysts for the HER have also been discussed.
Collapse
Affiliation(s)
- Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Shiying Hua
- Wuhan Institute of Marine Electric Propulsion Wuhan 430064 P. R. China
| | - Long Lai
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Zihao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Tiaohao Liao
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Xinming Wan
- China Automotive Engineering Research Institute Co., Ltd. Chongqing 401122 P. R. China
| |
Collapse
|
6
|
Hu ZN, Ai Y, Xu W, Zhang X, Sun Z, Guo L, Guo R, Wang Y, Ding K, Sun HB, Hu J, Liang Q, Yang Y. Iron Catalyzed Cascade Construction of Molybdenum Carbide Heterointerfaces for Understanding Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200439. [PMID: 35355393 DOI: 10.1002/smll.202200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The intercrystalline interfaces have been proven vital in heterostructure catalysts. However, it is still challenging to generate specified heterointerfaces and to make clear the mechanism of a reaction on the interface. Herein, this work proposes a strategy of Fe-catalyzed cascade formation of heterointerfaces for comprehending the hydrogen evolution reaction (HER). In the pure solid-phase reaction system, Fe catalyzes the in situ conversion of MoO2 to MoC and then Mo2 C, and the consecutive formation leaves lavish intercrystalline interfaces of MoO2 -MoC (in Fe-MoO2 /MoC@NC) or MoC-Mo2 C (in Fe-MoC/β-Mo2 C@NC), which contribute to HER activity. The improved HER activity on the interface leads to further checking of the mechanism with density functional theory calculation. The computation results reveal that the electroreduction (Volmer step) produced H* prefers to be adsorbed on Mo2 C; then two pathways are proposed for the HER on the interface of MoC-Mo2 C, including the single-molecular adsorption pathway (Rideal mechanism) and the bimolecular adsorption pathway (Langmuir-Hinshelwood mechanism). The calculation results further show that the former is favorable, and the reaction on the MoC-Mo2 C heterointerface significantly lowers the energy barriers of the rate-determining steps.
Collapse
Affiliation(s)
- Ze-Nan Hu
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Wenjuan Xu
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Liutao Guo
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Rongxiu Guo
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Kelong Ding
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jianshe Hu
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Renewable Energy and Chemical Transformation Cluster, Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| |
Collapse
|
7
|
Du CF, Wang Y, Zhao X, Wang J, Wang X, Wang W, Yu H. Ni-Directed biphase N-doped Mo 2C as an efficient hydrogen evolution catalyst in both acidic and alkaline conditions. Dalton Trans 2022; 51:6464-6472. [PMID: 35393992 DOI: 10.1039/d2dt00449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of efficient and low-cost catalysts is of great significance for the future application of the electrocatalytic hydrogen evolution reaction (HER). Herein, a series of Ni,N co-doped Mo2C nanostructures (Nix-Mo2C/N) with different Ni content levels are fabricated. The phase-directing effect of Ni on Mo2C/N is observed, which is in charge of the phase transformation of Mo2C/N from an α- to a β-phase. At the optimized Ni-doping level, biphase Ni15-Mo2C/N exhibits outstanding HER activity under both acidic and alkaline conditions. In particular, under alkaline conditions, Ni15-Mo2C/N delivers an overpotential of only 105.0 mV, accompanied by a low Tafel slope of 44.96 mV dec-1. The performance is comparable to commercial 20% Pt/C and higher than most state-of-the-art Mo2C-based catalysts as well.
Collapse
Affiliation(s)
- Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China. .,Northwestern Polytechnical University Chongqing Technology innovation Center, Chongqing, 400000, P. R. China
| | - Yaxin Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Xiangyuan Zhao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China. .,Northwestern Polytechnical University Chongqing Technology innovation Center, Chongqing, 400000, P. R. China
| | - Jinjin Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Xiaomei Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Weigang Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| |
Collapse
|
8
|
Dong S, Li Y, Zhao Z, Li R, He J, Yin J, Yan B, Zhang X. A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shizhi Dong
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Yanshuai Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Zhilong Zhao
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Ruichuan Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jiaqi He
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jinpeng Yin
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Bing Yan
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Xing Zhang
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| |
Collapse
|
9
|
Jiménez MJ, Lissarrague MS, Bechthold P, González EA, Jasen PV, Juan A. Ethanol adsorption on Ni doped Mo2C(001): a theoretical study. Top Catal 2022. [DOI: 10.1007/s11244-022-01596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Wang Q, Ren J, Sudi MS, Dou Y, Zhao W, Wang A, Zhao L, Shang D, Zhu W. Strongly Coupled Nitrogen-Doped Mo 2C@CoNi Alloy Hybrid Architecture toward Efficient Hydrogen Evolution Reaction. Inorg Chem 2022; 61:4114-4120. [PMID: 35179355 DOI: 10.1021/acs.inorgchem.1c03913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Development of high-efficiency electrocatalysts for water splitting is a promising channel to produce clean hydrogen energy. Herein, we demonstrate that the combination of nitrogen-doped Mo2C and CoNi alloy to form a hybrid architecture is an effective way to produce hydrogen from electrochemical water splitting. Benefiting from a combination of mechanisms, the optimized N-Mo2C@CoNi-650 shows remarkable hydrogen evolution reaction (HER) activity with small overpotentials of 35, 123, and 220 mV to reach the current density of 10, 50, and 100 mA cm-2 in alkaline media, respectively, outperforming most previously reported HER electrocatalysts. The efficient electrocatalytic performance is ascribed to the highly exposed active sites, fast reaction kinetics, and improved charge-transfer steaming from the synergistic effect between each component. This work presents a new insight into designing and preparing highly efficient electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jinshen Ren
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - M Shire Sudi
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Danhong Shang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, P.R. China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
11
|
Ye L, Zhang Y, Zhang M, Gong Y. An ingeniously assembled metal-organic framework on the surface of FeMn co-doped Ni(OH) 2 as a high-efficiency electrocatalyst for the oxygen evolution reaction. Dalton Trans 2021; 50:11775-11782. [PMID: 34351336 DOI: 10.1039/d1dt02127c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To overcome the problem of the sluggish kinetics of the oxygen evolution reaction (OER), it is of great significance to develop an efficient and stable non-noble metal-based OER catalyst for electrocatalytic energy conversion and storage. Herein, a complex of a metal-organic framework and hydroxide is synthesized by performing a ligand etching strategy on FeMn co-doped Ni(OH)2 nanosheets in situ grown on nickel foam (FeMn-Ni(OH)2@MOF/NF). Benefiting from the unique sheet-on-sheet hierarchical structure, multi-metal active nodes and two active materials grown in situ, the resulting FeMn-Ni(OH)2@MOF/NF demonstrated brilliant OER activity with an overpotential of 199 mV to achieve a current density of 10 mA cm-2 and long-term stability. This research will provide a new strategy for the design of high-performance OER electrocatalysts.
Collapse
Affiliation(s)
- Lei Ye
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China.
| | | | | | | |
Collapse
|