1
|
Zhang W, Sang W, Cui Y, Wang H, Yuan L, He Q, Zheng H. Fluoride Product Inhibition: New Insight into the Degradation of Nerve Agents by Zr-MOFs. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561327 DOI: 10.1021/acsami.4c15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have shown remarkable efficacy in catalytically degrading neurotoxic agents in recent years. However, the catalytic activity of Zr-MOFs can be inhibited due to the binding of phosphate degradation products to the Zr nodes. Here, we reported the inhibition effect of a nonphosphate substance, fluoride, which can deactivate Zr-MOF nodes for the degradation of GD and VX and simulate DEPPT. The experimental and theoretical calculation results reveal that the fluoride product during GD degradation shows much more significant suppression than phosphate. The phosphate products can depart from the Zr nodes completely by adding H2O molecules on the Zr nodes to reduce the energy barrier. However, the fluoride can replace the bridged μ3-OH groups and terminal -OH groups on Zr-oxo clusters irreversibly, changing the electric density of Zr nodes and eliminating the terminal -OH. Without the terminal -OH, the five-coordinate phosphorus intermediate cannot be formed, resulting in the inactivation of Zr-O-Zr sites. This study provides new insights into Zr-MOF catalyst deactivation mechanisms and may help to develop a new strategy to design MOFs with high anti-inhibition efficiency for the degradation of nerve agents.
Collapse
Affiliation(s)
- Wen Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
| | - Wenhao Sang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
2
|
Oliver MC, Wang S, Huang L. Computational Analysis of Sarin, Soman, and Their Water Mixtures in NU-1000: Interaction Mechanisms, Distribution Patterns, and Pairing Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23424-23436. [PMID: 39445518 DOI: 10.1021/acs.langmuir.4c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to their extraordinary structural stability under humid conditions, zirconium-based metal-organic frameworks (Zr-MOFs) have been widely investigated for the hydrolytic degradation of nerve agents. That said, mechanisms of hydrolysis in the solid state and the participation of environmental water are not well understood. This work utilizes computational techniques to evaluate the behavior of water and two organophosphorus nerve agents (sarin and soman) in NU-1000, a Zr-MOF with the characteristic attributes for hydrolytic efficiency under humid conditions. Density functional theory (DFT) calculations reveal that soman binds more favorably to NU-1000 active sites than sarin, resulting in different preferential locations of each nerve agent within the framework. The strength of nerve agent binding is also found to vary depending on the site environment, with more favorable binding of both nerve agents occurring in the c-pores of NU-1000 than in the mesopores. Molecular dynamics (MD) simulation results further illustrate that free water molecules in NU-1000 prioritize interactions with nerve agents. Given the variation in their affinity for active site interactions, the introduction of different nerve agents to the framework results in substantial differences in water distribution and behavior. The results give insight into potential variances in the functionality of NU-1000 toward the hydrolysis of each nerve agent. More importantly, they emphasize the significance of considering the role of environmental water in hydrolysis and the possibility of diverse reaction variables based on the type of nerve agent and the properties of the MOF.
Collapse
Affiliation(s)
- Madeleine C Oliver
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shanshan Wang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, P.R. China
| | - Liangliang Huang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Gibbons B, Johnson EM, Javed MK, Yang X, Morris AJ. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52703-52711. [PMID: 39292638 PMCID: PMC11450694 DOI: 10.1021/acsami.4c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Zirconium-based metal-organic frameworks (MOFs) have become one of the most promising materials for the adsorption and destruction of chemical warfare agents. While numerous studies have shown differences in reactivity based on MOF topology and postsynthetic modification, the understanding of how modifying MOF macromorphology is less understood. MOF xerogels demonstrate modified defect levels and larger porosity, which increase the number of and access to potential active sites. Indeed, UiO-66 and NU-901 xerogels display reaction rates 2 and 3 times higher, respectively, for the hydrolysis of DMNP relative to their powder morphologies. Upon recycling, MOF-808 xerogel outperforms MOF-808 powder, previously noted as the fastest Zr6 MOF for hydrolysis of organophosphate nerve agents. The increase in reactivity is largely driven by a higher external surface area and the introduction of mesoporosity to previously microporous materials.
Collapse
Affiliation(s)
| | | | | | - Xiaozhou Yang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Balasubramanian S, Kulandaisamy AJ, Rayappan JBB. Engineering the defects of UiO-66 MOF for an improved catalytic detoxification of CWA simulant: methyl paraoxon. RSC Adv 2024; 14:31535-31548. [PMID: 39372052 PMCID: PMC11450554 DOI: 10.1039/d4ra04637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Exigency in search of an ideal candidate for an effective detoxification of chemical warfare agents is still continuing. Zirconium-based Metal-organic Framework (MOF) UiO-66 has shown a significant detoxification of such toxic chemicals owing to its tunable physio-chemical properties and profuse catalytic sites. In this context, a series of UiO-66 MOFs synthesized by tuning the acidity constant (pK a) and concentration of the modulator, synthesis temperature and water molecules was tested for their detoxification efficiency against the simulant 'methyl-paraoxon' at room temperature. Amongst, HCl modulated UiO-66 across the considered synthesis temperature have shown competent catalytic performance in virtue of defects generation within its structure. In addition, the role of catalytic features of UiO-66 obtained by tailoring its defects in enhancing the degradation efficiency has been systematically investigated. The detoxification efficiency of 98.5% with a half-life time of 0.23 min has confirmed the effectiveness of engineered defects in enhancing the catalytic activity of UiO-66 in detoxifying the identified simulant.
Collapse
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| |
Collapse
|
5
|
Wu G, Zhang B, Zhang H, Zhang X, Hu X, Meng X, Wu J, Hou H. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Inorg Chem 2024; 63:12658-12666. [PMID: 38916863 DOI: 10.1021/acs.inorgchem.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.
Collapse
Affiliation(s)
- Gaigai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heyao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiangru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
7
|
Lim J, Park KC, Thaggard GC, Liu Y, Maldeni Kankanamalage BKP, Toler DJ, Ta AT, Kittikhunnatham P, Smith MD, Phillpot SR, Shustova NB. Friends or Foes: Fundamental Principles of Th-Organic Scaffold Chemistry Using Zr-Analogs as a Guide. J Am Chem Soc 2024; 146:12155-12166. [PMID: 38648612 DOI: 10.1021/jacs.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The fundamental interest in actinide chemistry, particularly for the development of thorium-based materials, is experiencing a renaissance owing to the recent and rapidly growing attention to fuel cycle reactors, radiological daughters for nuclear medicine, and efficient nuclear stockpile development. Herein, we uncover fundamental principles of thorium chemistry on the example of Th-based extended structures such as metal-organic frameworks in comparison with the discrete systems and zirconium extended analogs, demonstrating remarkable over two-and-half-year chemical stability of Th-based frameworks as a function of metal node connectivity, amount of defects, and conformational linker rigidity through comprehensive spectroscopic and crystallographic analysis as well as theoretical modeling. Despite exceptional chemical stability, we report the first example of studies focusing on the reactivity of the most chemically stable Th-based frameworks in comparison with the discrete Th-based systems such as metal-organic complexes and a cage, contrasting multicycle recyclability and selectivity (>97%) of the extended structures in comparison with the molecular compounds. Overall, the presented work not only establishes the conceptual foundation for evaluating the capabilities of Th-based materials but also represents a milestone for their multifaceted future and foreshadows their potential to shape the next era of actinide chemistry.
Collapse
Affiliation(s)
- Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
9
|
Liu Y, Zhao S, Li Y, Huang J, Yang X, Wang J, Tao CA. Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:559. [PMID: 38607094 PMCID: PMC11013765 DOI: 10.3390/nano14070559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/13/2024]
Abstract
Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal-organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein, we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show that sonication can effectively enhance the removal performance under optimal conditions; the reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation revealed that the band gap could be further widened with the application of mechanical stress, which was beneficial for the generation of 1O2, thus further upgrading the detoxification performance toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA protection, but promising applications are rarely reported.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| | - Cheng-an Tao
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| |
Collapse
|
10
|
Seo JY, Song Y, Lee JH, Na J, Baek KY. Robust and highly reactive membranes for continuous disposal of chemical warfare agents: Effects of nanostructure and functionality in MOF and nanochitin aerogel composites. Carbohydr Polym 2024; 324:121489. [PMID: 37985045 DOI: 10.1016/j.carbpol.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Developing appropriate disposal of stockpiles of chemical warfare agents (CWAs) has gained significant attention as their lethal toxicity seriously harms humanity. In this study, a novel green-fabrication method with UiO-66 catalysts and amine-functionalized chitin nanofibers (ChNFs) was suggested to prepare durable and highly reactive membranes for decomposing chemical warfare agents (CWAs) in the continuous flow system. The strong interaction between ChNFs and the UiO-66 led to stable loading of the UiO-66 on the continuous nano-porous channel of the ChNF reactive membrane even with high loading of UiO-66 (70 wt% of UiO-66 in the ChNF substrate). In addition, the Brønsted base functionalities (-NH2 and -NHCOCH3) of the ChNF enhanced the catalytic activity and recyclability of the UiO-66. The resulting 70-ChNF composites can effectively decompose a nerve agent simulant (methyl paraoxon) even after 7 repeatable cycles, which has been not obtained in the previous UiO-66 catalyst. The ChNF/UiO-66 reactive membranes with 1 m2 of the area decomposed 130 g of CWAs within an hour in a continuous flow system. We believe these robust and highly reactive membranes can provide a sustainable and efficient solution for the massive CWA disposal and also contribute to the advancement of functional membrane material science.
Collapse
Affiliation(s)
- Jin Young Seo
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02481, Republic of Korea
| | - Younghan Song
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02481, Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Lei Y, Gao Y, Xiao Y, Huang P, Wu FY. Zirconium-based metal-organic framework loaded agarose hydrogels for fluorescence turn-on detection of nerve agent simulant vapor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5674-5682. [PMID: 37860869 DOI: 10.1039/d3ay01539d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Developing reliable sensors that accurately detect deadly chemical gases is critical to global security. Nerve agents are one of the most dangerous chemicals in the world and are often found in gaseous forms in the environment, which remain a challenge to detect because of their low levels. In this paper, a fluorescent probe based on a Zr-based metal-organic framework UiO-66-NH2 was proposed. The specific binding between the Zr-O site of UiO-66-NH2 and diethyl chlorophosphate (DCP) blocked the ligand-to-metal charge transfer (LMCT) process in UiO-66-NH2, thereby enabling the fluorescence turn-on detection of DCP. More importantly, a simple and portable hydrogel soft-solid platform (UiO-66-NH2@Aga) was constructed by incorporating UiO-66-NH2 into the formation process of agarose (Aga) hydrogel for fast and sensitive detection of gaseous DCP. When the hydrogel was exposed to a low concentration of DCP vapor, its fluorescence changed from colorless to bright blue, allowing visualization of the DCP gas for analysis. The UiO-66-NH2@Aga integrated solid-state platform showed an excellent response to DCP vapor in the detection range of 1.98 to 9.90 ppm and with a detection limit of 1.16 ppm. This work opened up a unique way to design a convenient, low cost and practical gas physical examination platform.
Collapse
Affiliation(s)
- You Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Yuting Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
12
|
Oliver MC, Huang L. Advances in Metal-Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2178. [PMID: 37570496 PMCID: PMC10420847 DOI: 10.3390/nano13152178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The destruction of chemical warfare agents (CWAs) is a crucial area of research due to the ongoing evolution of toxic chemicals. Metal-organic frameworks (MOFs), a class of porous crystalline solids, have emerged as promising materials for this purpose. Their remarkable porosity and large surface areas enable superior adsorption, reactivity, and catalytic abilities, making them ideal for capturing and decomposing target species. Moreover, the tunable networks of MOFs allow customization of their chemical functionalities, making them practicable in personal protective equipment and adjustable to dynamic environments. This review paper focuses on experimental and computational studies investigating the removal of CWAs by MOFs, specifically emphasizing the removal of nerve agents (GB, GD, and VX) via hydrolysis and sulfur mustard (HD) via selective photooxidation. Among the different MOFs, zirconium-based MOFs exhibit extraordinary structural stability and reusability, rendering them the most promising materials for the hydrolytic and photooxidative degradation of CWAs. Accordingly, this work primarily concentrates on exploring the intrinsic catalytic reaction mechanisms in Zr-MOFs through first-principles approximations, as well as the design of efficient degradation strategies in the aqueous and solid phases through the establishment of Zr-MOF structure-property relationships. Recent progress in the tuning and functionalization of MOFs is also examined, aiming to enhance practical CWA removal under realistic battlefield conditions. By providing a comprehensive overview of experimental findings and computational insights, this review paper contributes to the advancement of MOF-based strategies for the destruction of CWAs and highlights the potential of these materials to address the challenges associated with chemical warfare.
Collapse
Affiliation(s)
| | - Liangliang Huang
- School of Sustainable Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
13
|
Li T, Mei Q, Wang Y, Sun Q, Liu S, Zhang Y, Liu W, Wei G, Zhou M, Wei H. Air-Derived Inhibitor of Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257026 DOI: 10.1021/acsami.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanozymes are functional nanomaterials with enzyme-mimicking activities, which have found wide applications in various fields. Investigation on nanozyme inhibitors not only helps to apply nanozymes in a controlled manner but also deepens our insight into the catalysis mechanism. Herein, we report an inorganic ion inhibitor, HCO3-, which can significantly inhibit the alkaline phosphatase-mimicking activities of Ce6 cluster-based metal-organic framework (Ce-MOF) nanozymes. The inhibition of adsorption of the negatively charged fluorescence sodium on Ce6 clusters in Ce-MOF nanoparticles (NPs) by HCO3- proves that HCO3- ions occupy and deactivate Ce6 clusters (i.e., catalytic active sites), leading to the activity inhibition of Ce-MOF nanozymes. Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer is widely employed as the alkaline reaction medium. HCO3- ions can be formed in Tris-HCl buffer through adsorption of CO2 in the air during storage in a sealed tube, which significantly inhibits the activity of Ce-MOF nanozymes. To our knowledge, this study is the first to demonstrate an air-derived inhibitor of nanozymes.
Collapse
Affiliation(s)
- Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuting Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanling Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Gen Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Min Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
14
|
Wu S, Wang L, Zhu H, Liang J, Ge L, Li C, Miao T, Li J, Cheng Z. Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical warfare agents, such as nerve agents (GD and VX) and blister agents (HD), have strong toxicities to mankind. In recent years, zirconium-based metal-organic frameworks have been found to be attractive materials for chemical warfare agent degradation. Among them, metal-organic framework-808 (MOF-808) and porous coordination network-222 (PCN-222) were the best. However, few papers pay attention to their practical application. In this work, we prepared MOF-808 and PCN-222 using water phase and organic solvothermal methods, respectively. Their performance for the catalytic degradation of chemical warfare agents under practical decontamination conditions was studied. The results showed that MOF-808 displayed a high potency for catalytic hydrolysis of VX (10,000 mg L−1) in unbuffered solution. PCN-222 exhibited weaker reactivity with a half-life ( t1/2) of 28.8 min. Their different performances might stem from the different connectivity of the Zr6 nodes and framework structures. The results illustrated that the hydrolysis of high-concentration GD required a strong alkaline buffer to neutralize the hydrolysis product of hydrofluoric acid (HF) to avoid catalyst poisoning. When H2O2 was used as the oxidant instead of O2, both zirconium-based metal-organic frameworks performed with effective catalytic potency for HD degradation without any special lighting and so was suitable for practical application, whereas the products obtained from HD, such as HDO2 and V-HDO2, still possessed vesicant toxicity. Overall, MOF-808 prepared via a water-phase synthesis performed with effective catalysis for the degradation of high-concentration VX, GD, and HD with t1/2 of < 0.5, 3.1 and 2.2 min, respectively, exhibiting its potential for practical applications.
Collapse
Affiliation(s)
| | | | - Haiyan Zhu
- Institute of NBC Defence, Beijing, P. R. China
| | - Jing Liang
- Institute of NBC Defence, Beijing, P. R. China
| | - Liang Ge
- Institute of NBC Defence, Beijing, P. R. China
| | - Cong Li
- Institute of NBC Defence, Beijing, P. R. China
| | - Ting Miao
- Institute of NBC Defence, Beijing, P. R. China
| | - Jian Li
- Institute of NBC Defence, Beijing, P. R. China
| | | |
Collapse
|
15
|
Zhang X, Fu P, Xiong D, Li Y, Dong X. Synthesis, crystal structures, and magnetic properties of three nickel (II) coordination polymers based on a rigid pyrazine carboxylic acid containing different N ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Johnson EM, Boyanich MC, Gibbons B, Sapienza NS, Yang X, Karim AM, Morris JR, Troya D, Morris AJ. Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorg Chem 2022; 61:8585-8591. [PMID: 35613459 DOI: 10.1021/acs.inorgchem.2c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mikaela C Boyanich
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S Sapienza
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Kiaei K, Nord MT, Chiu NC, Stylianou KC. Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19747-19755. [PMID: 35445601 DOI: 10.1021/acsami.2c03325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the neutralization of chemical warfare agents (CWAs), the generation of an effective catalyst that can be handled safely and applied in personal protective equipment is required. Recently, zirconium-based metal-organic frameworks (Zr-MOFs: UiO-66 and UiO-67) have shown great promise in the degradation of CWAs, including nerve agents. Their catalytic activity is owed to the interplay of both Zr(IV) Lewis acids and Lewis basic groups in the MOF structure. The latter act as proximal bases that can interact with CWAs and improve the catalytic activity of Zr-MOFs. The powder form of MOFs, though, makes them impractical catalysts, as it is challenging to handle, regenerate, and reuse them. To address this challenge, we have synthesized three Zr-MOFs with Lewis basic amino and pyridine functionalities and shaped them in spherical polymeric beads using the phase inversion method. Using this method, we can generate beads with many polymer and MOF combinations (MOF@polymer). We controlled the MOF loading in these beads, and scanning electron microscopy images revealed that the MOF crystals are evenly distributed in the polymeric matrix, ensuring effective catalytic activity. We used these beads to degrade dimethyl p-nitrophenyl phosphate (DMNP), a simulant for the G-type nerve agent. Using 31P NMR, we showed that UiO-66-NH2@PES and UiO-67-(NH2)2@PES PES: poly(ether sulfone) beads destruct DMNP to dimethyl phosphate (DMP) with a half-life (t1/2) of 5.09 and 4.34 min, respectively. Beads made of hydrophobic polymers such as poly(vinylidene fluoride) (PVDF), polystyrene (PS), and Zr-MOFs with pyridine functionalities show that the quantitative hydrolysis of DMNP requires more time compared to that seen with the UiO-66-NH2@PES beads. Our work highlights the facile shaping of MOF powders into beads that can be easily regenerated with their catalytic activity to be maintained for at least three cycles of use.
Collapse
Affiliation(s)
- Kimia Kiaei
- Materials Discovery Laboratory (MaD Lab), 153 Gilbert Hall, Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Makenzie T Nord
- Materials Discovery Laboratory (MaD Lab), 153 Gilbert Hall, Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nan-Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), 153 Gilbert Hall, Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), 153 Gilbert Hall, Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
18
|
Yu GH, Yang CL, Zhao HL, Yu AX, Zhang G, Du DY, Su ZM. Mixed-Linker Strategy for the Construction of Metal-Organic Framework Combined with Dyes toward Alcohol Detection. Inorg Chem 2022; 61:5318-5325. [PMID: 35302364 DOI: 10.1021/acs.inorgchem.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a N-rich metal-organic framework (MOF) with four kinds of cages, Zn4(ade)2(TCA)2(H2O) (NENU-1000, Hade = adenine, H3TCA = 4,4',4″-tricarboxytriphenylamine, NENU = Northeast Normal University), was prepared by the mixed-ligand strategy. Cationic dyes can be selectively absorbed by NENU-1000 at proper concentrations, but not neutral and anionic dyes, which perhaps can be assigned to the N-rich neutral framework of NENU-1000. When NENU-1000 was introduced to a relatively lower concentration of cationic dye solutions (e.g., rhodamine B or basic red 2), the colors of these systems faded quickly. Furthermore, the faded solutions can be used for the detection of methanol and other small alcohol molecules with either the naked eye or common UV-vis spectra. The effect of the length of carbon chain, the position of the -OH group, and the number of the hydroxyl group of the alcohols was explored for the color development rate. In addition, the performance of NENU-1000 in iodine sorption and release was also studied.
Collapse
Affiliation(s)
- Guang-Hui Yu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chun-Lei Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Hong-Lei Zhao
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Xuan Yu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dong-Ying Du
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhong-Min Su
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
19
|
de Koning MC, Vieira Soares C, van Grol M, Bross RPT, Maurin G. Effective Degradation of Novichok Nerve Agents by the Zirconium Metal-Organic Framework MOF-808. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9222-9230. [PMID: 35138813 DOI: 10.1021/acsami.1c24295] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novichoks are a novel class of nerve agents (also referred to as the A-series) that were employed in several poisonings over the last few years. This calls for the development of novel countermeasures that can be applied in protective concepts (e.g., protective clothing) or in decontamination methods. The Zr metal-organic framework MOF-808 has recently emerged as a promising catalyst in the hydrolysis of the V- and G-series of nerve agents as well as their simulants. In this paper, we report a detailed study of the degradation of three Novichok agents by MOF-808 in buffers with varying pH. MOF-808 is revealed to be a highly efficient and regenerable catalyst for Novichok agent hydrolysis under basic conditions. In contrast to the V- and G-series of agents, degradation of Novichoks is demonstrated to proceed in two consecutive hydrolysis steps. Initial extremely rapid P-F bond breaking is followed by MOF-catalyzed removal of the amidine group from the intermediate product. The intermediate thus acted as a competitive substrate that was rate-determining for the whole two-step degradation route. Under acidic conditions, the amidine group in Novichok A-230 is more rapidly hydrolyzed than the P-F bond, giving rise to another moderately toxic intermediate. This intermediate could in turn be efficiently hydrolyzed by MOF-808 under basic conditions. These experimental observations were corroborated by density functional theory calculations to shed light on molecular mechanisms.
Collapse
Affiliation(s)
- Martijn C de Koning
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Carla Vieira Soares
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| | - Marco van Grol
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Rowdy P T Bross
- TNO Defense, Safety and Security, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Place E. Bataillon, Montpellier 34095, France
| |
Collapse
|
20
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jennifer K. Naglic
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Katherine McCullough
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | | | - Ryan E. Corkill
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jochen Lauterbach
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Stavros G. Karakalos
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Donna A. Chen
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
21
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
23
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A MOF Multifunctional Cargo Vehicle for Reactive Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2021; 61:e202113909. [PMID: 34845811 DOI: 10.1002/anie.202113909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). Simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive reagents, as an attractive alternative to the use of toxic pure gases or gas generators.
Collapse
Affiliation(s)
- Preecha Kittikhunnatham
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Gabrielle A Leith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29201, Columbia, UNITED STATES
| | - Abhijai Mathur
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jennifer K Naglic
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Corey R Martin
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Kyoung Chul Park
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Katherine McCullough
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - H D A Chathumal Jayaweera
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Ryan E Corkill
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jochen Lauterbach
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Stavros G Karakalos
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Coulmbia, UNITED STATES
| | - Mark D Smith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Sophya Garashchuk
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Donna A Chen
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Natalia B Shustova
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter street GSRC-533, SC, Columbia, UNITED STATES
| |
Collapse
|