1
|
Zhang Y, Li H, Yin D. Recent Progress in Bismuth Vanadate-Based Photocatalysts for Photodegradation Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:331. [PMID: 40072134 PMCID: PMC11901587 DOI: 10.3390/nano15050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Bismuth vanadate (BiVO4), a well-known semiconductor photocatalyst with various advantages, has shown great potential in addressing energy and environmental issues. However, its inherent drawbacks restrict the photocatalytic performance of pure BiVO4. In the past few years, many efforts have been devoted to improving the catalytic activity of BiVO4 and revealing the degradation mechanism in depth. In this review, we summarized the recent progress on BiVO4 in the field of photocatalytic degradation, including the strategies which enhance light absorption ability and suppress the recombination of charge carriers of BiVO4, as well as the related degradation mechanism. Finally, future prospects and challenges are summarized, which may provide new guidelines for designing more effective BiVO4-based photocatalysts for the degradation of persistent organic pollutants.
Collapse
Affiliation(s)
| | | | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (H.L.)
| |
Collapse
|
2
|
Nie X, Zhong X, Yang F, Wang R, He X, Liu W. Constructing Adsorption Site-Enhanced Vo-BiOCl/rGO Heterostructures for Efficient Response to NO 2/NH 3 Gases at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36628-36636. [PMID: 38954707 DOI: 10.1021/acsami.4c07241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Real-time detection of harmful gases at room temperature has become a serious problem in public health and environmental monitoring. Two-dimensional materials with semiconductor properties BiOCl is a promising gas-sensitive material due to its large specific surface area and adjustable band gap as well as outstanding safety characteristics. However, limited by the weak gas adsorption sites and sluggish charge-transfer ability, the performance of BiOCl could not be fully exploited. Oxygen vacancy (Vo) engineering can introduce lattice defects, thereby significantly increasing the local charge density and enhancing the adsorption of gases, which is an effective strategy to enhance the gas-sensing performance. In this work, we composite BiOCl with a vacancy (Vo-BiOCl) and reduced graphene oxide (rGO) to construct a Vo-BiOCl/rGO heterostructure with enhanced gas adsorption sites. Experimental and theoretical calculations show that Vo can enhance the adsorption of gases and the introduction of rGO forms a high-quality heterostructure with BiOCl, which can effectively reduce the band gap of BiOCl and promote electron transfer, thereby improving the sensitivity of the sensor. Benefiting from above, Vo-BiOCl/rGO achieves the ability to detect low concentrations of NO2/NH3 at room temperature, with high sensitivity (55% at 1 ppm of NO2 and -28% at 1 ppm of NH3), fast response time (40 s at 1 ppm of NO2 and 2 s at 1 ppm of NH3), good stability (over 150 days), and fully recoverable gas sensitivity.
Collapse
Affiliation(s)
- Xinmiao Nie
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xue Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Rongguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Wenbo Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Qu L, Gou Q, Deng J, Zheng Y, Li M. A Perspective of Bioinspired Interfaces Applied in Renewable Energy Storage and Conversion Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6601-6611. [PMID: 38478901 DOI: 10.1021/acs.langmuir.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The natural world renders a large number of opportunities to design intriguing structures and fascinating functions for innovations of advanced surfaces and interfaces. Currently, bioinspired interfaces have attracted much attention in practical applications of renewable energy storage and conversion devices including rechargeable batteries, fuel cells, dye-sensitized solar cells, and supercapacitors. By mimicking miscellaneous natural creatures, many novel bioinspired interfaces with various components, structures, morphology, and configurations are exerted on the devices' electrodes, electrolytes, additives, separators, and catalyst matrixes, resorting to their wonderful mechanical, optical, electrical, physical, chemical, and electrochemical features compared with the corresponding traditional modes. In this Perspective, the principles of designing bioinspired interfaces are discussed with respect to biomimetic chemical components, physical morphologies, biochemical reactions, and macrobiomimetic assembly configurations. A brief summary, subsequently, is mainly focused on the recent progress on bioinspired interfaces applied in key materials for rechargeable batteries. Ultimately, a critical comment is projected on significant opportunities and challenges existing in the future development course of bioinspired interfaces. It is expected that this Perspective is able to provide a profound perception into some underlying artificial intelligent energy storage and conversion device design as a promising candidate to resolve the global energy crisis and environmental pollution.
Collapse
Affiliation(s)
- Long Qu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing 401331, P. R. China
| | - Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jiangbin Deng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
4
|
Yi L, Jiang H, Ma Y, Zhu R, Zhang G, Ren Z. Highly efficient visible-light driven dye degradation via 0D BiVO 4 nanoparticles/2D BiOCl nanosheets p-n heterojunctions. CHEMOSPHERE 2024; 354:141658. [PMID: 38484995 DOI: 10.1016/j.chemosphere.2024.141658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The construction of hybrid heterojunction photocatalysts is an effective strategy to improve the utilization of photogenerated carriers and photocatalytic activity. To enhance the separation distance of photogenerated carriers and accelerate the effective separation at the heterojunction of the interface, a unique 0D-2D hierarchical nanostructured p-n heterojunction was successfully fabricated in this work. BiOCl (BOC) nanosheets (p-type) were in situ grown on BiVO4 (BVO) nanoparticles (n-type) using the microemulsion-calcination method for highly efficient visible-light-driven organic dye degradation. Compared with pure BVO (the degradation rate of rhodamine B (RhB): about 32.0% in 55 min, the mineralization rate: 24.9% in 120 min), the RhB degradation rate can reach about 99.5% in 55 min and the mineralization rate of 62.1% in 120 min by utilizing BVO/25%BOC heterojunction photocatalyst under visible light irradiation. Various characterizations demonstrate that the formation of BVO/BOC p-n heterojunction greatly facilitates photogenerated carriers separation efficiency. Meanwhile, the results of the scavenging experiments and electron spin resonance tests indicate that ·O2- and h+ are the prominent active species for Rh B degradation. In addition, possible degradation pathways for Rh B were proposed using LC-MS tests. This work proves that building low dimensional p-n heterojunction photocatalysts is a promising strategy for developing photocatalysts with high efficiency.
Collapse
Affiliation(s)
- Lian Yi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Hongyi Jiang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Yueyong Ma
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
6
|
Wu M, Li N, Shi M, Sun G, Shen W, Li Q, Ma J. Fabrication of multiphase MoSe 2 modified BiOCl nanosheets for efficient piezo-photoelectric hydrogen evolution and antibiotic degradation. Dalton Trans 2023; 52:12852-12861. [PMID: 37622402 DOI: 10.1039/d3dt02153j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Efficient spatial charge separation plays a crucial role in improving the photocatalytic performance. Therefore, 1T/2H MoSe2/BiOCl (1T/2H MS/BOC) and 2H MoSe2/BiOCl (2H MS/BOC) piezo-photocatalysts are synthesized. By combining piezoelectric catalysis and photocatalysis, a highly active piezo-photocatalytic process is realized. The optimal 1T/2H MS/BOC piezo-photocatalyst displays superior diclofenac (DCF) degradation and hydrogen (H2) evolution activity under the combined action of ultrasound and light. In particular, the DCF degradation kinetic constant (k) of optimal 0.5% 1T/2H MS/BOC under the synergistic effect of ultrasound and light is 0.057 min-1, which is 8.1 and 6.3 times higher than those of BiOCl (0.007 min-1) and 0.5% 2H MS/BOC (0.009 min-1). Moreover, the H2 evolution rate of 0.5% 1T/2H MS/BOC is 122.5 μmol g-1 h-1, which is also higher than those of BiOCl (45.8 μmol g-1 h-1) and 2H MS/BOC (49.5 μmol g-1 h-1). The dramatic improvement in the DCF degradation and H2 evolution piezo-photocatalytic performance of 1T/2H MS/BOC catalysts is ascribed to the built-in polarization electric field and abundance of active sites of 1T/2H MS/BOC as well as the advantageous band structure between BiOCl and 1T/2H MoSe2. Additionally, three probable degradation pathways of DCF were put forward from the results of liquid chromatography-mass spectrometry (LCMS) and density functional theory (DFT) calculations. This study provides the design strategy of high efficiency piezo-photocatalysts in environmental purification and energy-generation fields based on phase and band structure engineering.
Collapse
Affiliation(s)
- Mianmian Wu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Nan Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Minghao Shi
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Guifang Sun
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Wenjing Shen
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Qingfei Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Jiangquan Ma
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Wu Q, Lai X, Ji XH, Jiang H, Du P. Improved visible light triggered photocatalytic activities of BiOCl photocatalysts via a synergistic effect of doping and heterojunction engineering. Phys Chem Chem Phys 2023; 25:22819-22831. [PMID: 37584164 DOI: 10.1039/d3cp02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
To manipulate the photocatalytic activities of BiOCl photocatalysts, doping and heterojunction engineering are simultaneously adopted. Herein, the photocatalysts Sm3+-doped BiOCl and BiOCl:Sm3+@yg-C3N4 were designed, in which their phase structure, morphology, optical properties and photocatalytic activities were systematically discussed. Excited at 408 nm, red emissions are seen from Sm3+-doped BiOCl microplates and their intensities were impacted by doping content, reaching the maximum value when the Sm3+ content was 1 mol% and the involved concentration mechanism was dominated by quadrupole-quadrupole interaction. Through analyzing the degradation of TC, the visible light triggered photocatalytic behaviors of the resultant compounds were studied. Compared with BiOCl microplates, an improved TC removal ability was seen in Sm3+-doped BiOCl microplates and the products with a Sm3+ content of 0.5 mol% show the best performance. Moreover, through constructing the heterojunction with g-C3N4, the TC removal capacity was further enhanced and the BiOCl:Sm3+@60%g-C3N4 exhibits the optimal photocatalytic activity, which was also much better than that of the commercial SnO2 and TiO2. Accordingly, the ˙O2-, h+ and ˙OH active species were proven to contribute to the involved visible light driven photocatalytic mechanism. Furthermore, the separation and recombination of photogenerated carries via the Z-scheme transfer process in the designed heterojunction composites, led to splendid photocatalytic properties. Additionally, it was verified that the TC solution treated with synthesized compounds was nontoxic toward plant growth. Our findings may propose an available route to regulate the photocatalytic performance of the visible light driven photocatalysts.
Collapse
Affiliation(s)
- Qian Wu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China.
| | - Xiaoqing Lai
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China.
| | - Xiao-Hui Ji
- Shaanxi Province Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, P. R. China
| | - Hai Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China.
| | - Peng Du
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China.
| |
Collapse
|
8
|
Yuan Z, Jiang Z. Applications of BiOX in the Photocatalytic Reactions. Molecules 2023; 28:4400. [PMID: 37298876 PMCID: PMC10254493 DOI: 10.3390/molecules28114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BiOX (X = Cl, Br, I) families are a kind of new type of photocatalysts, which have attracted the attention of more and more researchers. The suitable band gaps and their convenient tunability via the change of X elements enable BiOX to adapt to many photocatalytic reactions. In addition, because of their characteristics of the unique layered structure and indirect bandgap semiconductor, BiOX exhibits excellent separation efficiency of photogenerated electrons and holes. Therefore, BiOX could usually demonstrate fine activity in many photocatalytic reactions. In this review, we will present the various applications and modification strategies of BiOX in photocatalytic reactions. Finally, based on a good understanding of the above issues, we will propose the future directions and feasibilities of the reasonable design of modification strategies of BiOX to obtain better photocatalytic activity toward various photocatalytic applications.
Collapse
Affiliation(s)
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
9
|
Li J, Ni Z, He Y, Yang S, Gao Q, Cai X, Fang Y, Qiu R, Zhang S. Insight into the mechanism and toxicity assessment of a novel Co3O4/BiOBr p-n heterojunction driven by sunlight for efficient degradation of glyphosate. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Zhang M, Duo F, Lan J, Zhou J, Chu L, Wang C, Li L. In situ synthesis of a Bi 2O 3 quantum dot decorated BiOCl heterojunction with superior photocatalytic capability for organic dye and antibiotic removal. RSC Adv 2023; 13:5674-5686. [PMID: 36798748 PMCID: PMC9927829 DOI: 10.1039/d2ra07726d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
As a decoration method, coupling a photocatalyst with semiconductor quantum dots has been proven to be an efficient strategy for enhanced photocatalytic performance. Herein, a novel BiOCl nanosheet decorated with Bi2O3 quantum dots (QDs) was first synthesized by a facile one-step in situ chemical deposition method at room temperature. The as-prepared materials were characterized by multiple means of analysis. The Bi2O3QDs with an average diameter of about 8.0 nm were uniformly embedded on the surface of BiOCl nanosheets. The obtained Bi2O3QDs/BiOCl exhibited significantly enhanced photocatalytic performance on the degradation of the rhodamine B and ciprofloxacin, which could be attributed to the band alignment, the photosensitization effect and the strong coupling between Bi2O3 and BiOCl. In addition, the dye photosensitization effect was demonstrated by the monochromatic photodegradation experiments. The radical trapping experiments and the ESR testing demonstrated the type II charge transfer route of the heterojunction. Finally, a reasonable photocatalytic mechanism based on the relative band positions was discussed to illustrate the photoreaction process. These findings provide a good choice for the design and potential application of BiOCl-based photocatalysts in water remediation.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning 185 Qianshanzhong Road Anshan 114051 Liaoning China +86 13841291383.,Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang University Xinxiang 453003 Henan China
| | - Fangfang Duo
- Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang UniversityXinxiang 453003HenanChina
| | - Jihong Lan
- Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang UniversityXinxiang 453003HenanChina
| | - Jianwei Zhou
- Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang UniversityXinxiang 453003HenanChina
| | - Liangliang Chu
- Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang UniversityXinxiang 453003HenanChina
| | - Chubei Wang
- Henan Photoelectrocatalytic Material and Micro-nano Application Technology Academician Workstation, Xinxiang UniversityXinxiang 453003HenanChina
| | - Lixiang Li
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning 185 Qianshanzhong Road Anshan 114051 Liaoning China +86 13841291383.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University Haikou 570228 China
| |
Collapse
|
11
|
Anand P, Verma A, Hong YA, Hu A, Jaihindh DP, Wong MS, Fu YP. Morphological and elemental tuning of BiOCl/BiVO 4 heterostructure for uric acid electrochemical sensor and antibiotic photocatalytic degradation. CHEMOSPHERE 2023; 310:136847. [PMID: 36241103 DOI: 10.1016/j.chemosphere.2022.136847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DES) consisting of EG-(ChCl: C2H6O2) and TU-(ChCl: CH4N2S) assisted synthesized BiOCl/BiVO4 heterostructured catalyst studied for electrochemical uric acid (UA) sensor and tetracycline photocatalytic degradation. The chemical composition of the BiOCl/BiVO4 catalyst was analyzed by X-ray photoelectron spectroscopy (XPS). UV-vis spectroscopy reveals increased absorption of visible light till the near-infrared region, which results in a narrowing of band gap energy from 2.3 eV to 2.2 eV for BiOCl/BiVO4-TU. Morphology of catalyst analyzed using field-emission scanning electron microscope (FE-SEM) and Transmission electron microscope (TEM) technique. Time-Resolved photoluminescence (TRPL) confirms an increased lifetime of e-/h+ pair after heterostructure formation. The catalyst-modified glassy carbon electrode shows selectivity toward the detection of uric acid (UA). The limit of detection (LOD) is estimated to be 0.04688 μM for UA; also, interference and stability of catalyst were studied. Photocatalytic activity of the synthesized catalyst was investigated by degrading tetracycline (TC) antibiotic pollutants, and their intermediate product was analyzed by ion trap mass spectrometry (MS).
Collapse
Affiliation(s)
- Pandiyarajan Anand
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan
| | - Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan
| | - Yi-An Hong
- Institute of Medical Sciences, Tzu-Chi University, Hualien, 97002, Taiwan
| | - Anren Hu
- Institute of Medical Sciences, Tzu-Chi University, Hualien, 97002, Taiwan; Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien, 97004, Taiwan
| | | | - Ming-Show Wong
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan.
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan.
| |
Collapse
|
12
|
Wang L, Miao Z, Bi F, Xiao S, Zhao L, Li Y, Kong L, Li Y, Yang J, Zhang X, Gai G. One-pot room-temperature synthesis of a BiOCl hierarchical microsphere assembled from nanosheets with exposed {001} facets for enhanced photosensitized degradation. RSC Adv 2022; 12:35905-35922. [PMID: 36545104 PMCID: PMC9753103 DOI: 10.1039/d2ra06627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BiOCl hierarchical microspheres assembled from nanosheets with exposed {001} facets were successfully synthesized using PEG-2000 as template by a one-pot room-temperature hydrolysis method. The PEG-modified BiOCl photocatalyst exhibits a significantly enhanced RhB photosensitized degradation activity under visible light. After 10 min white LED irradiation, the degradation efficiency of RhB by the PEG-modified BiOCl sample S 0.07 reaches 99.5%. The degradation rate constant of the PEG-modified sample S 0.07 over RhB is 0.4568 min-1, which is 6.76 times that of the unmodified sample S 0 (0.0676 min-1). After 4 min of xenon lamp (λ ≥ 420 nm) irradiation, the degradation rate of RhB by S 0.07 is almost 100%. The exposed {001} facets with surface defects contribute to the superior adsorption capacity of BiOCl towards RhB, which immensely accelerates the electron transfer efficiency from the excited RhB into the conduction band of BiOCl, forming superoxide radical (˙O2 -) active species to degrade the pollutants. Moreover, the superior RhB-sensitized BiOCl system provides high photocatalytic degradation activity over MO. This work provides a facile and efficient BiOCl synthesis method that is conducive to large-scale production and simultaneously opens up new ideas for the synthesis of other photocatalysts.
Collapse
Affiliation(s)
- Liyan Wang
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Zhiqiang Miao
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Fei Bi
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Shanshan Xiao
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Li Zhao
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Yongtao Li
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Lingwei Kong
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal UniversityChangchun 130024P. R. China
| | - Jingxiu Yang
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Xuejian Zhang
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| | - Guangqing Gai
- Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu UniversityChangchun 130118P. R. China
| |
Collapse
|
13
|
Cho W, Lee D, Choi G, Kim J, Kojo AE, Park C. Supramolecular Engineering of Amorphous Porous Polymers for Rapid Adsorption of Micropollutants and Solar-Powered Volatile Organic Compounds Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206982. [PMID: 36121423 DOI: 10.1002/adma.202206982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Freshwater shortage is becoming one of the most critical global challenges owing to severe water pollution caused by micropollutants and volatile organic compounds (VOCs). However, current purification technology shows slow adsorption of micropollutants and requires an energy-intensive process for VOCs removal from water. In this study, a highly efficient molecularly engineered covalent triazine framework (CTF) for rapid adsorption of micropollutants and VOC-intercepting performance using solar distillation is reported. Supramolecular design and mild oxidation of CTFs (CTF-OXs) enable hydrophilic internal channels and improve molecular sieving of micropollutants. CTF-OX shows rapid removal efficiency of micropollutants (>99.9% in 10 s) and can be regenerated several times without performance loss. Uptake rates of selected micropollutants are high, with initial pollutant uptake rates of 21.9 g mg-1 min-1 , which are the highest rates recorded for bisphenol A (BPA) adsorption. Additionally, photothermal composite membrane fabrication using CTF-OX exhibits high VOC rejection rate (up to 98%) under 1 sun irradiation (1 kW m-2 ). A prototype of synergistic purification system composed of adsorption and solar-driven membrane can efficiently remove over 99.9% of mixed phenol derivatives. This study provides an effective strategy for rapid removal of micropollutants and high VOC rejection via solar-driven evaporation process.
Collapse
Affiliation(s)
- Wansu Cho
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Dongjun Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Gyeonghyeon Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Jihyo Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Acquah Ebenezer Kojo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| |
Collapse
|
14
|
Pan L, Zhang M, Mei H, Yao L, Jin Z, Liu H, Zhou S, Yao Z, Zhu G, Cheng L, Zhang L. 3D bionic reactor optimizes photon and mass transfer by expanding reaction space to enhance photocatalytic CO2 reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Rashid J, Imtiaz F, Xu M, Savina IN. Hydrogen peroxide modified and bismuth vanadate decorated titanium dioxide nanocomposite (BiVO 4@HMT) for enhanced visible light photocatalytic growth inhibition of harmful cyanobacteria in water. RSC Adv 2022; 12:31338-31351. [PMID: 36349036 PMCID: PMC9623613 DOI: 10.1039/d2ra05317a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The persistence of harmful cyanobacterial algal blooms in aquatic ecosystems leads to health damage for various life forms. In this study, a photocatalyst active in the visible light range was prepared by combining BiVO4 with hydrogen peroxide modified titanium dioxide (BiVO4@HMT; for short), using an impregnation method. The catalyst was used to photocatalytically inhibit the growth of cyanobacteria collected from a bloom site. To infer the optimum pH for cyanobacterial growth, the effect of pH was studied. The growth of cyanobacteria was favoured in an alkaline environment at pH values in the range of 8-9.5 when analysed on the 20th day of incubation. Structural and chemical analysis of pristine and composite nano-powders was performed using XRD, SEM, TEM and XPS, confirming the heterojunction formation, while optical and band gap analysis revealed increased visible light absorption and reduced band gap of the composite. A small strawberry seed-like assembly of BiVO4 particles increased the light absorption in the 15%BiVO4@HMT composite and increased the inhibition efficiency up to 2.56 times compared to pristine HMT at an exposure time of 6 h and cell concentration at 0.1 g L-1 with an optimum catalyst dose of 1 g L-1. The amount of chlorophyll 'a' decreased due to the generation of catalytically reactive species, especially holes (h+), which caused oxidative damage to the cell wall, cell membrane and antioxidants in algal cells. This study reports that visible light active nanocatalysts can be used as a promising method for reducing algal blooms in water bodies.
Collapse
Affiliation(s)
- Jamshaid Rashid
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Fatima Imtiaz
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
| | - Irina N Savina
- School of Applied Sciences, University of Brighton Huxley Building, Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
16
|
Ren H, Lv K, Liu W, Li P, Zhang Y, Lv Y. Deep-Eutectic-Solvent-Assisted Synthesis of a Z-Scheme BiVO 4/BiOCl/S,N-GQDS Heterojunction with Enhanced Photocatalytic Degradation Activity under Visible-Light Irradiation. MICROMACHINES 2022; 13:1604. [PMID: 36295957 PMCID: PMC9608195 DOI: 10.3390/mi13101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Z-scheme heterojunction photocatalytic nanomaterial designs have attracted attention due to their high catalytic performance. Deep eutectic solvents (DESs) have been used as green, sustainable media, acting as solvents and structure inducers in the synthesis of nanomaterials. In this work, a novel visible-light-absorption-enhanced bismuth vanadate/bismuth oxychloride/sulfur, nitrogen co-doped graphene quantum dot (BiVO4/BiOCl/S,N-GQDS) heterojunction photocatalyst was prepared in a deep eutectic solvent. The photosynthetic activity of the BiVO4/BiOCl/S,N-GQDS composite was determined by the photocatalytic degradation of rhodamine B (RhB) under visible-light irradiation. The results showed that the highest photocatalytic activity of BiVO4/BiOCl/S,N-GQDS was achieved when the doping amount of S,N-GQDS was 3%, and the degradation rate of RhB reached 70% within 5 h. The kinetic and photocatalytic cycles showed that the degradation of Rhb was in accordance with the quasi-primary degradation kinetic model, and the photocatalytic performance remained stable after four photocatalytic cycles. Ultraviolet-visible diffuse reflectance (UV-DRS) and photoluminescence (PL) experiments confirmed that BiVO4/BiOCl/S,N-GQDS ternary heterojunctions have a narrow band gap energy (2.35 eV), which can effectively improve the separation efficiency of the photogenerated electron-hole pairs and suppress their complexation. This is due to the construction of a Z-scheme charge process between the BiVO4/BiOCl binary heterojunction and S,N-GQDS, which achieves effective carrier separation and thus a strong photocatalytic capability. This work not only provides new insights into the design of catalysts using a green solvent approach but also provides a reference for the study of heterojunction photocatalytic materials based on bismuth vanadate, as well as new ideas for other photocatalytic materials.
Collapse
Affiliation(s)
- Hengxin Ren
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Kuilin Lv
- China Building Materials Test and Certification Group Co., Ltd., Chaoyang District, Beijing100024, China
| | - Wenbin Liu
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Pengfei Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
17
|
Fang Y, Liang Q, Li Y, Luo H. Surface oxygen vacancies and carbon dopant co-decorated magnetic ZnFe 2O 4 as photo-Fenton catalyst towards efficient degradation of tetracycline hydrochloride. CHEMOSPHERE 2022; 302:134832. [PMID: 35525442 DOI: 10.1016/j.chemosphere.2022.134832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Carbon doped strategy has been recognized as an efficient strategy to enhance photo-Fenton degradation performance. However, the preparation of high efficiency C-doped photocatalyst has been a significant challenge. Herein, we synthesized magnetic carbon-doped ZnFe2O4 via a facile solvothermal-calcination route. The photo-Fenton activity of C-doped ZnFe2O4 under visible light (λ > 420 nm) was evaluated by degradation of tetracycline hydrochloride. C-doped sample, CZF-2 (0.5 g L-1) presented excellent removal performance for TC-HCl (20 mg L-1) in presence of H2O2 (10 mM) and could remove 90.8% of TC-HCl within 50 min. The C-doping modulates crystal defects and generates surface oxygen vacancies simultaneously, thus building a new C-doping level near valence band and a defect level under the conduction band. Meanwhile, surface oxygen vacancies bring photo-generated electrons and electrons generated from itself to surface to accelerate photo-Fenton reaction, and the holes are rapidly transferred to the surface to participate in the degradation of pollutants.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qianwei Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Ying Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Hu L, Ding Z, Yan F, Li K, Feng L, Wang H. Construction of Hexagonal Prism-like Defective BiOCL Hierarchitecture for Photocatalytic Degradation of Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2700. [PMID: 35957131 PMCID: PMC9370337 DOI: 10.3390/nano12152700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Oxygen vacancy manipulation and hierarchical morphology construction in oxygen-containing semiconductors have been demonstrated to be effective strategies for developing high efficiency photocatalysts. In most studies of bismuth-based photocatalysts, hierarchical morphology and crystal defects are achieved separately, so the catalysts are not able to benefit from both features. Herein, using boiling ethylene glycol as the treatment solution, we developed an etching-recrystallization method for the fabrication of 3D hierarchical defective BiOCl at ambient pressure. The target hierarchical 3D-BiOCl is composed of self-assembled BiOCl nanosheets, which exhibit a hexagonal prism-like morphology on a micron scale, while simultaneously containing numerous oxygen vacancies within the crystal structure. Consequently, the target catalyst was endowed with a higher specific surface area, greater light harvesting capability, as well as more efficient separation and transfer of photo-excited charges than pristine BiOCl. As a result, 3D-BiOCl presented an impressive photocatalytic activity for the degradation of tetracycline hydrochloride in both visible light and natural white light emitting diode (LED) irradiation. Moreover, an extraordinary recycling property was demonstrated for the target photocatalyst thanks to its hierarchical structure. This study outlines a simple and energy-efficient approach for producing high-performance hierarchically defective BiOCl, which may also open up new possibilities for the morphological and crystal structural defect regulation of other Bi-based photocatalysts.
Collapse
Affiliation(s)
- Lijun Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Zhichao Ding
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Fei Yan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Kuan Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| |
Collapse
|
19
|
Zinatloo-Ajabshir S, Emsaki M, Hosseinzadeh G. Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J Colloid Interface Sci 2022; 619:1-13. [DOI: 10.1016/j.jcis.2022.03.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
|
20
|
Lv H, Zhang M, Wang P, Xu X, Liu Y, Yu DG. Ingenious Construction of Ni(DMG)2/TiO2-decorated Porous Nanofibers for the Highly Efficient Photodegradation of Pollutants in Water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Motamedi M, Yerushalmi L, Haghighat F, Chen Z. Recent developments in photocatalysis of industrial effluents ։ A review and example of phenolic compounds degradation. CHEMOSPHERE 2022; 296:133688. [PMID: 35074327 DOI: 10.1016/j.chemosphere.2022.133688] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Industrial expansion and increased water consumption have created water scarcity concerns. Meanwhile, conventional wastewater purification methods have failed to degrade recalcitrant pollutants efficiently. The present review paper discusses the recent advances and challenges in photocatalytic processes applied for industrial effluents treatment, with respect to phenolic compounds degradation. Key operational parameters including the catalyst loading, light intensity, initial pollutants concentration, pH, and type and concentrations of oxidants are evaluated and discussed. Compared to the other examined controlling parameters, pH has the highest effect on the photo-oxidation of contaminants by means of the photocatalyst ionization degree and surface charge. Furthermore, major phenolic compounds derived from industrial sources are comprehensively presented and the applicability of photocatalytic processes and the barriers in practical applications, including high energy demand, technical challenges, photocatalyst stability, and recyclability have been explored. The importance of energy consumption and operational costs for realistic large-scale processes are also discussed. Finally, research gaps in this area and the suggested direction for improving degradation efficiencies in industrial applications are presented. In the light of these premises, selective degradation processes in real water matrices such as untreated sewage are proposed.
Collapse
Affiliation(s)
- Mahsa Motamedi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Laleh Yerushalmi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| |
Collapse
|
22
|
The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Abubshait HA, Iqbal S, Abubshait SA, Alotaibi MT, Alwadai N, Alfryyan N, Alsaab HO, Awwad NS, Ibrahium HA. A well-defined S-g-C 3N 4/Cu-NiS heterojunction interface towards enhanced spatial charge separation with excellent photocatalytic ability: synergetic effect, kinetics, antibacterial activity, and mechanism insights. RSC Adv 2022; 12:3274-3286. [PMID: 35425388 PMCID: PMC8979347 DOI: 10.1039/d1ra07974c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022] Open
Abstract
A well-defined heterojunction among two dissimilar semiconductors exhibited enhanced photocatalytic performance owing to its capability for boosting the photoinduced electron/hole pair transportation. Therefore, designing and developing such heterojunctions using diverse semiconductor-based materials to enhance the photocatalytic ability employing various approaches have gained research attention. For this objective, g-C3N4 is considered as a potential photocatalytic material for organic dye degradation; however, the rapid recombination rate of photoinduced charge carriers restricts the widespread applications of g-C3N4. Henceforth, in the current study, we constructed a heterojunction of S-g-C3N4/Cu-NiS (SCN/CNS) two-dimensional/one-dimensional (2D/1D) binary nanocomposites (NCs) by a self-assembly approach. XRD results confirm the construction of 22% SCN/7CNS binary NCs. TEM analysis demonstrates that binary NCs comprise Cu-NiS nanorods (NRs) integrated with nanosheets (NSs) such as the morphology of SCN. The observed bandgap value of SCN is 2.69 eV; nevertheless, the SCN/CNS binary NCs shift the bandgap to 2.63 eV. Photoluminescence spectral analysis displays that the electron-hole pair recombination rate in the SCN/CNS binary NCs is excellently reduced owing to the construction of the well-defined heterojunction. The photoelectrochemical observations illustrate that SCN/CNS binary NCs improve the photocurrent to ∼0.66 mA and efficiently suppress the electron-hole pairs when compared with that of undoped NiS, CNS and SCN. Therefore, the 22% SCN/7CNS binary NCs efficiently improved methylene blue (MB) degradation to 99% for 32 min under visible light irradiation.
Collapse
Affiliation(s)
- Haya A Abubshait
- Basic Sciences Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority P. O. Box 530 El Maadi Egypt
| |
Collapse
|
24
|
Liao H, Zhong J, Li J, Huang S, Duan R. Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Qi R, Liu J, Yuan H, Yu Y. Sulfur-Doped BiOCl with Enhanced Light Absorption and Photocatalytic Water Oxidation Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2221. [PMID: 34578537 PMCID: PMC8472310 DOI: 10.3390/nano11092221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Photocatalysis is a powerful strategy to address energy and environmental concerns. Sulfur-doped BiOCl was prepared through a facial hydrothermal method to improve the photocatalytic performance. Experimental results and theoretical calculations demonstrated that the band structure of the sulfur-doped BiOCl was optimally regulated and the light absorption range was expanded. It showed excellent visible-light photocatalytic water oxidation properties with a rate of 141.7 μmol h-1 g-1 (almost 44 times of that of the commercial BiOCl) with Pt as co-catalyst.
Collapse
Affiliation(s)
- Ruilian Qi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Jian Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China;
| | - Huanxiang Yuan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Yu Yu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|