1
|
Sheridan TR, Gaidimas MA, Kramar BV, Goswami S, Chen LX, Farha OK, Hupp JT. Noncovalent Surface Modification of Metal-Organic Frameworks: Unscrambling Adsorption Properties via Isothermal Titration Calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11199-11209. [PMID: 36067497 DOI: 10.1021/acs.langmuir.2c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the importance of noncovalent interactions in the utilization of metal-organic frameworks (MOFs), using these interactions to functionalize MOFs has rarely been explored. The ease of functionalization and potential for surface-selective functionalization makes modification via noncovalent interactions promising for the creation of porous photocatalytic assemblies. Using isothermal titration calorimetry, photoluminescence measurements, and desorption experiments, we have explored the nature and magnitude of the interactions of [Ru(bpy)2(bpy-R)]2+-functionalized dyes with the surface of MIL-96, where R = C3, C8, C12, and C18 alkyl chains of either straight-chain or cyclic conformations. The orientation of the dyes appears to be flat against the surface with respect to the long alkyl chains, and the surface concentration approaches a monolayer at high initial concentrations of dye. Strangely, the dodecyl-functionalized dye, despite having a smaller interaction energy and larger footprint than either octyl-functionalized dye, achieves the highest maximum surface concentration. Based on photoluminescence spectra, desorption experiments, and ITC data, we believe this is due to the core of the dye being lifted from the surface as the chain length increases. Our understanding of these interactions is important for further utilization of this method for the functionalization of the internal and external surface areas of MOFs.
Collapse
Affiliation(s)
- Thomas R Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madeleine A Gaidimas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Daliran S, Khajeh M, Oveisi AR, Albero J, García H. CsCu 2I 3 Nanoparticles Incorporated within a Mesoporous Metal-Organic Porphyrin Framework as a Catalyst for One-Pot Click Cycloaddition and Oxidation/Knoevenagel Tandem Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36515-36526. [PMID: 35939817 PMCID: PMC9940116 DOI: 10.1021/acsami.2c04364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and metal halide perovskites are currently under much investigation due to their unique properties and applications. Herein, an innovative strategy has been developed combining an iron-porphyrin MOF, PCN-222(Fe), and an in situ-grown CsCu2I3 nontoxic lead-free halide perovskite based on an earth-abundant metal that becomes incorporated within the MOF channels [CsCu2I3@PCN-222(Fe)]. Encapsulation was designed to decrease and control the particle size and increase the stability of CsCu2I3. The hybrid materials were characterized by various techniques including FE-SEM, elemental mapping and line scanning EDX, TEM, PXRD, UV-Vis DRS, BET surface area, XPS, and photoemission measurements. Hybrid CsCu2I3@PCN-222(Fe) materials were examined as heterogeneous multifunctional (photo)catalysts for copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and one-pot selective photo-oxidation/Knoevenagel condensation cascade reaction. Interestingly, CsCu2I3@PCN-222(Fe) outperforms not only its individual components CsCu2I3 and PCN-222(Fe) but also other reported (photo)catalysts for these transformations. This is attributed to cooperation and synergistic effects of the PCN-222(Fe) host and CsCu2I3 nanocrystals. To understand the catalytic and photocatalytic mechanisms, control and inhibition experiments, electron paramagnetic resonance (EPR) measurements, and time-resolved phosphorescence were performed, revealing the main role of active species of Cu(I) in the click reaction and the superoxide ion (O2•-) and singlet oxygen (1O2) in the photocatalytic reaction.
Collapse
Affiliation(s)
- Saba Daliran
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Mostafa Khajeh
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Ali Reza Oveisi
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Josep Albero
- Departamento
de Química and Instituto de Tecnología Química
CSIC-UPV, Universitat Politècnica
de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Hermenegildo García
- Departamento
de Química and Instituto de Tecnología Química
CSIC-UPV, Universitat Politècnica
de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Sha F, Tai TY, Gaidimas MA, Son FA, Farha OK. Leveraging Isothermal Titration Calorimetry to Obtain Thermodynamic Insights into the Binding Behavior and Formation of Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6771-6779. [PMID: 35617684 DOI: 10.1021/acs.langmuir.2c00812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique which directly measures the thermodynamic parameters of binding events. Although historically it has been used to investigate interactions in biological macromolecules and the kinetics of enzyme-catalyzed reactions, ITC has also been demonstrated to provide relevant thermodynamic information about interactions in synthetic systems, such as those in metal-organic frameworks (MOFs). MOFs are a family of crystalline porous materials that have been widely studied as supports for molecules ranging from gases to biomolecules through physisorption and chemisorption. Herein, we offer a perspective on the current applications of ITC in MOFs, including the mechanism of small molecule adsorption and the formation of MOF-based composite materials through noncovalent interactions. Experimental considerations specific to running ITC experiments in MOF systems are reviewed on the basis of existing reports. We conclude by discussing underexplored, but promising, MOF-related research directions which could be elucidated by ITC.
Collapse
|
4
|
Zhao H, Huang J, Zhang PP, Zhang JJ, Fang WJ, Song XD, Liu S, Duan C. The role of thermodynamically stable configuration in enhancing crystallographic diffraction quality of flexible MOFs. iScience 2021; 24:103398. [PMID: 34841232 PMCID: PMC8605418 DOI: 10.1016/j.isci.2021.103398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Single-crystal X-ray diffraction (SCXRD) is a widely used method for structural characterization. Generally, low temperature is of great significance for improving the crystallographic diffraction quality. Herein we observe that this practice is not always effective for flexible metal-organic frameworks (f-MOFs). An abnormal crystallography, that is, more diffraction spots at a high angle and better resolution of diffraction data as the temperature increases in the f-MOF (1-g), is observed. XRD results reveal that 1-g has a reversible anisotropic thermal expansion behavior with a record-high c-axial positive expansion coefficient of 1,401.8 × 10-6 K-1. Calculation results indicate that the framework of 1-g has a more stable thermodynamic configuration as the temperature increases. Such configuration has lower-frequency vibration and may play a key role in promoting higher Bragg diffraction quality at room temperature. This work is of great significance for how to obtain high-quality SCXRD diffraction data.
Collapse
Affiliation(s)
- He Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxiang Huang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pei-Pei Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jian-Jun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang-Jian Fang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue-Dan Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuqin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|