1
|
Nie Z, Huang Z, Wu Z, Xing Y, Yu F, Wang R. SERS-based approaches in the investigation of bacterial metabolism, antibiotic resistance, and species identification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126051. [PMID: 40090104 DOI: 10.1016/j.saa.2025.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an inelastic scattering phenomenon that occurs when photons interact with substances, providing detailed molecular structure information. It exhibits various advantages including high sensitivity, specificity, and multiple-detection capabilities, which make it particularly effective in bacterial detection and antibiotic resistance research. In this review, we review the recent development of SERS-based approaches in the investigation of bacterial metabolism, antibiotic resistance, and species identification. Although the promising applications have been realized in clinical microbiology and diagnostics, several challenges still limit the further development, including signal variability, the complexity of spectral data interpretation, and the lack of standardized protocols. To overcome these obstacles, more reproducible and standardized methodologies, particularly in nanomaterial design and experimental condition optimization. Furthermore, the integration of SERS with machine learning and artificial intelligence can automate spectral analysis, improving the efficiency and accuracy of bacterial species identification, resistance marker detection, and metabolic monitoring. Combining SERS with other analytical techniques, such as mass spectrometry, fluorescence microscopy, or genomic sequencing, could provide a more comprehensive understanding of bacterial physiology and resistance mechanisms. As SERS technology advances, its applications are expected to extend beyond traditional microbiology to areas like environmental monitoring, food safety, and personalized medicine. In particular, the potential for SERS to be integrated into point-of-care diagnostic devices offers significant promise for enhancing diagnostics in resource-limited settings, providing cost-effective, rapid, and accessible solutions for bacterial infection and resistance detection.
Collapse
Affiliation(s)
- Zhun Nie
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhijun Huang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhongying Wu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Wu J, Meng X, Jiang Y, Hou Y, Chen T, Wang X, Li A. Synergistic Defect and Heterojunction Engineering for Significantly Increased Raman Enhancement on Monolayer Metallic Transition Metal Chalcogenide Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501655. [PMID: 40420628 DOI: 10.1002/smll.202501655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/27/2025] [Indexed: 05/28/2025]
Abstract
2D transition metal chalcogenide nanosheets (TMC NSs) have been recognized as ideal platforms for surface-enhanced Raman spectroscopy (SERS). Nevertheless, the unsatisfying Raman enhancement exerts a substantial restriction on their practical applications. Herein, a strategy is demonstrated simultaneously integrating defect and heterojunction engineering within metallic TMC NSs for highly sensitive SERS detection of analytes. Particularly, metallic FeSe-CoSex/Cu monolayers with finely controlled Cu ion doping ratios and rich FeSe-CoSex/Cu heterojunctions are synthesized. The metallic property endows abundant electronic density of states (DOS) near the fermi level for increasing electron transition probability. The heterojunctions enable the delivery of electrons from FeSe to CoSex/Cu, contributing to charge transfer (CT) from CoSex/Cu to probe molecules. Moreover, Cu ions doping can well modulate the electronic structure of CoSex/Cu, further facilitating the CT between substrates and molecules. Benefiting from the rational engineering of defects and heterojunctions, an ultrasensitive molecular sensing performance is obtained on the FeSe-CoSex/Cu30% NSs. The practical application of the FeSe-CoSex/Cu30% NSs in trace and quantitative SERS detection of metamitron herbicide in water samples is successfully achieved with the limit of detection (LOD) of 1.3 × 10-8 M.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Engineering Medicine, Beihang University, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Xiangyu Meng
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yongzheng Jiang
- School of Engineering Medicine, Beihang University, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yuxin Hou
- School of Engineering Medicine, Beihang University, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Tao Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100089, China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Anran Li
- School of Engineering Medicine, Beihang University, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| |
Collapse
|
3
|
Wu Y, Weng S, Wang T, Kong KV, Lin D. Research progress on regulation strategies for surface-enhanced Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40402188 DOI: 10.1039/d5ay00555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
As a highly sensitive analytical technology, surface enhanced Raman spectroscopy (SERS) based on localized surface plasmon resonance has been widely explored in the field of environment monitoring, food safety, material identification and biomedicine. In the field of biosensing, the design of sensing models, the regulation of enhancement factors (EFs), and the stability of detection results have always been crucial research keys. Progress in these areas has continuously expanded the application scope of SERS technology and improved the feasibility of its application. Among them, the regulation of EFs through physical enhancement and chemical enhancement is a crucial point in improving the performance of SERS. Starting from the physicochemical mechanism, this review discusses the relevant influencing parameters and then summarizes the latest regulation strategies based on the above theory, as well as special regulation methods such as E-SERS. A diverse array of regulation strategies underpinned by the SERS enhancement mechanism have been effectively harnessed to amplify the EF of the SERS system. These include a wide spectrum of metal nanostructures based on the electromagnetic mechanism (EM), as well as regulation approaches predicated on the chemical mechanism (CM), such as energy-level manipulation, defect engineering, and material coupling. In addition, it encompasses specialized regulation methods such as analyte pre-concentration. This article focuses on summarizing the principal regulation approaches that have significantly impacted SERS enhancement in recent years, complemented by specialized regulation methods, with the hope of facilitating smoother progress in future work related to SERS.
Collapse
Affiliation(s)
- Yangmin Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Shuohong Weng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Tingyin Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
4
|
Li W, He S, Chen W, Lyu P, Liu Y, Bao J, Kan C, Jiang M, Cao S, Liu Y. Tailoring Colour Centres of Host-Dopant Light Emitters by X-Ray Radiations. SMALL METHODS 2025:e2402180. [PMID: 40318135 DOI: 10.1002/smtd.202402180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/14/2025] [Indexed: 05/07/2025]
Abstract
Electrically driven host-dopant structure, such as single Ga-doped ZnO microwire, is promising for miniaturized light sources. However, the electroluminescence (EL) for a fixed concentration of Ga dopant barely vary for a single ZnO micro/nanostructure, limiting their applications in integrated optoelectronics. Here X-ray irradiation is reported as a simple and effective post-treatment to tailor the EL intensity and color coordinate of Ga-doped ZnO microwires. After irradiating the microwires under an X-ray dose of 180 Gy, the intensity of green EL light increases by ≈12 times, accompanied by a narrowed spectrum linewidth. Meanwhile, the EL color coordinate shifts from (0.309, 0.416) for pristine microwires to (0.319, 0.503) for X-ray irradiated ones, corresponding to more purified green emission. The EL intensity monotonically increases (>20 times) with further increments of irradiation doses, and intense X-ray irradiations shift the EL color center toward the green-yellow spectral region and a total average redshift of ≈30±6 nm is achieved. The density functional theory (DFT) simulations suggest that the EL variation may stem from the substitution of host Zn atoms by interstitial Ga dopant stimulated by high-energy X-ray. These presented results indicate X-ray irradiation is a potential post-treatment strategy for host-dopant light emitters toward practical applications.
Collapse
Affiliation(s)
- Weidian Li
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Siyuan He
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wenfa Chen
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Pin Lyu
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ying Liu
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jincheng Bao
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Caixia Kan
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing, 210016, China
- National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Mingming Jiang
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing, 210016, China
- National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuiyan Cao
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing, 210016, China
- National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yanpeng Liu
- College of Physics, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
5
|
Piras A, Olla C, Fusaro L, Tumanov N, Kelchtermans AS, De Sloovere D, Elen K, Carbonaro CM, Hardy A, Adriaensens P, Aprile C, Van Bael M. Exploring the Synergistic Interplay of Optical, Morphological, and Catalytic Features in Ga-Doped ZnO Nanoparticles: Harnessing Their Potential for Photocatalytic Dye Degradation under UV-Green Light Irradiation. Inorg Chem 2025; 64:5923-5934. [PMID: 40096623 DOI: 10.1021/acs.inorgchem.4c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This work explores the synthesis and characterization of undoped ZnO, Ga-doped ZnO (Ga:ZnO), and γ-Ga2O3 quasi-spherical nanoparticles and their catalytic activity in Rhodamine B photodegradation under UV-visible light exposure. Gallium dopant incorporation into Ga:ZnO was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES), Fourier transform infrared (FT-IR), and powder X-ray diffraction (XRD), maintaining the hexagonal wurtzite structure with an additional zinc gallium carbonate Layered Double Hydroxide (LDH) phase at higher dopant concentrations. TEM images revealed no significant alteration in the morphology or size of the nanoparticles. 71Ga-NMR indicated the location of the gallium atoms within the ZnO lattice, showing coordination changes with an increasing dopant concentration. Ga-doped ZnO nanoparticles demonstrated reduced efficiency under UV light compared to commercial references. γ-Ga2O3 exhibited superior performance in UV-C for Rhodamine B degradation, diminishing under UV-A, attributed to nanoparticle agglomeration. ZnO and Ga:ZnO catalysts showed optimal performance under green light irradiation, highlighting their performances over the commercial zinc oxide material. Photoluminescence measurements suggested favorable gallium dopant incorporation, with no substantial variation of oxygen vacancies, consequently retaining the photocatalytic properties of ZnO, which are crucial for Rhodamine B degradation under green light irradiation. This study elucidates the intricate relationship among gallium doping, material properties, and photocatalytic performance, providing valuable insights for developing advanced photocatalysts.
Collapse
Affiliation(s)
- Alessandra Piras
- Unit of Nanomaterials Chemistry, Department of Chemistry, NISM, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Chiara Olla
- Department of Physics, Cittadella Universitaria, University of Cagliari, I-09042 Monserrato, Italy
| | - Luca Fusaro
- Unit of Nanomaterials Chemistry, Department of Chemistry, NISM, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Nikolay Tumanov
- Unit of Nanomaterials Chemistry, Department of Chemistry, NISM, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - An-Sofie Kelchtermans
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Dries De Sloovere
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
- Division Imomec, Imec, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ken Elen
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
- Division Imomec, Imec, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Carlo Maria Carbonaro
- Department of Physics, Cittadella Universitaria, University of Cagliari, I-09042 Monserrato, Italy
| | - An Hardy
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
- Division Imomec, Imec, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Peter Adriaensens
- Analytical and Circular Chemistry (ACC), Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Carmela Aprile
- Unit of Nanomaterials Chemistry, Department of Chemistry, NISM, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marlies Van Bael
- DESINe Group, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
- Division Imomec, Imec, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| |
Collapse
|
6
|
Yosri N, Gao S, Zhou R, Wang C, Zou X, El-Seedi HR, Guo Z. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem 2025; 467:142395. [PMID: 39667301 DOI: 10.1016/j.foodchem.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Food contamination poses serious health risks, compelling the discovery of new methods to guarantee regulatory compliance and build consumer conviction. Surface Enhanced Raman Spectroscopy (SERS) has come into sight as a sophisticated approach for the ultrasensitive discovery of toxins in food and water, proposing non-destructive, quick, and precise analysis. Instantaneously, quantum dots (QDs) are astonishing nanomaterials, characterized by distinctive attributes such as quantum confinement and optical photostability. This article extends a decisive outline of SERS technology, pointing out its amalgamation with QDs and discussing numerous augmentation approaches i.e., chemical enhancement, electromagnetic enhancement, Van Hove singularities, the Brus equation, Förster resonance energy transfer, band gap energy, and quantum yield. The amalgamation of SERS with QDs commands an important promise in international food security and conservational sustainability. Nevertheless, QDs provide several compensations, they also aspect a few concerns, counting probable toxicity, stability problems, and predisposition to interference. To tackle these items, further research is required to synthesize safer, more stable QD materials and to refine protocols for practical real-world applications. While some reviews on SERS have been published recently, to our knowledge, the current review is the first one dedicated to QDs-assisted SERS in food safety.
Collapse
Affiliation(s)
- Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Yang X, Shi Y, Zhang H, Chen Z. Utilizing a synergistic strategy that combines electromagnetic and chemical enhancement to analyze the SERS effect of the Fe 3O 4@GO@Ag on PAHs detection. J Colloid Interface Sci 2025; 678:532-539. [PMID: 39214005 DOI: 10.1016/j.jcis.2024.08.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
A comprehensive understanding of the enhancement mechanism of the substrate material is crucial to ensure the repeatability and functionality of SERS detection technology. Therefore, this study introduces a theoretical analysis method that integrates electromagnetic and chemical enhancement to achieve a comprehensive understanding of the SERS effect on the magnetic composite substrate. The visual model is employed in this study to comprehensively analyze and illustrate the electric field enhancement and optical effects of composite substrate materials. The study also elucidated the adsorption and charge transfer between the substrate material and target molecules. Based on this theory, Fe3O4@GO@Ag material was prepared and used to detect hydrophobic organic molecules such as polycyclic aromatic hydrocarbons (PAHs), with a concentration as low as 0.5 nM. This study comprehensively analyzed the SERS enhancement effect of the composite substrate for the first time, and prepared a magnetic composite substrate material for the detection of hydrophobic organic molecules, opening up a new avenue for theoretical guidance and experimental exploration in SERS detection and analysis.
Collapse
Affiliation(s)
- Xu Yang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Yunbo Shi
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China.
| | - Haoze Zhang
- School of Instrumentation Science and Engineering, Harbin 150006, China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin 150006, China
| |
Collapse
|
8
|
Kwon RG, Kiguye C, Jeong J, Kim GW, Kim JY. Enhanced Performance of Polymer Photodetectors Using a Metal-Doped Zinc Oxide Interfacial Layer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4239-4246. [PMID: 39763140 DOI: 10.1021/acsami.4c19448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.e., Indium gallium zinc oxide (IGZO)) and ytterbium gallium (i.e., Ytterbium gallium zinc oxide (YGZO)) on the electron extraction efficiency, conductivity, and dark current suppression of the resulting OPD. Both dopants blended uniformly into the sol-gel ZnO framework, which reduced the roughness and improved the surface properties. Compared with ZnO, both IGZO and YGZO slightly shifted the absorption spectra and reduced the dark current density while improving the specific detectivity under reverse bias conditions. We introduce a metric called the Jones factor (JF) as the ratio of the specific detectivity under zero bias conditions to the specific detectivity under reverse bias conditions. Both IGZO and YGZO had much lower JF values than ZnO, which indicates that their specific detectivity drops much less than that of ZnO when the OPD shifts from photovoltaic mode (i.e., zero bias) to photoconductive mode (i.e., reverse bias). Thus, they are potentially better materials for the electron transport layer of the OPDs with a higher electron extraction efficiency.
Collapse
Affiliation(s)
- Ri Gyeong Kwon
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Collins Kiguye
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jaebum Jeong
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Gun Woong Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jun Young Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
9
|
Taha I, Abdulhamid ZM, Straubinger R, Emwas AH, Polychronopoulou K, Anjum DH. Ga-doped ZnO nanoparticles for enhanced CO 2 gas sensing applications. Sci Rep 2024; 14:29712. [PMID: 39613931 DOI: 10.1038/s41598-024-81279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Gallium-doped zinc oxide (GZO) has demonstrated significant potential in gas-sensing applications due to its enhanced electrical and chemical properties. This study focuses on the synthesis, characterization, and gas-sensing performance of GZO nanoparticles (NPs), specifically targeting CO₂ detection, which is crucial for environmental monitoring and industrial safety. The GZO samples were synthesized using a sol-gel method, and their crystal structure was determined through X-ray diffraction (XRD), confirming the successful incorporation of gallium into the ZnO lattice. X-ray photoelectron spectroscopy (XPS) was employed to analyze the samples' elemental composition and chemical state, revealing the presence of Ga in the ZnO matrix and providing insights into the doping effects. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy (EDS) was used to confirm the purity and elemental distribution of the synthesized samples, ensuring the homogeneity of the Ga doping. In-situ TEM measurements were also conducted on one of the three samples, with the smallest size. The experiment involved exposing the sample to argon (Ar) as a reference gas and carbon dioxide (CO₂) as the target gas to evaluate the sensor's response under real-time conditions. The in-situ TEM provided nanoscale observation of changes in the crystal structure parameters, particularly the d-spacing, which exhibited significant alterations exceeding 3.2% when exposed to CO₂ and Ar gases. Furthermore, electron paramagnetic resonance (EPR) and optical joint density of states (OJDS) analyses were performed to examine the presence of paramagnetic defects and to comprehensively understand the electronic structure within the GZO sample, respectively.
Collapse
Affiliation(s)
- Inas Taha
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Zeyad M Abdulhamid
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| | - Rainer Straubinger
- Core Technology Platforms, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kyriaki Polychronopoulou
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | - Dalaver H Anjum
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
10
|
Yang J, Dang T, Ma S, Tang S, Ding Y, Seki M, Tabata H, Matsui H. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO 3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048517 DOI: 10.1021/acsami.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tang Dang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuting Ma
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Ding
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
12
|
Abedini S, Pourseyedi S, Zolala J, Mohammadi H, Abdolshahi R. Green synthesis of Superparamagnetic Iron Oxide and Silver Nanoparticles in Satureja hortensis Leave Extract: Evaluation of Antifungal Effects on Botryosphaeriaceae Species. Curr Microbiol 2024; 81:149. [PMID: 38642138 DOI: 10.1007/s00284-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 04/22/2024]
Abstract
In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.
Collapse
Affiliation(s)
- Sara Abedini
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Mohammadi
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
13
|
Guo R, Wang J, Zhao W, Cui S, Qian S, Chen Q, Li X, Liu Y, Zhang Q. A novel strategy for specific sensing and inactivation of Escherichia coli: Constructing a targeted sandwich-type biosensor with multiple SERS hotspots to enhance SERS detection sensitivity and near-infrared light-triggered photothermal sterilization performance. Talanta 2024; 269:125466. [PMID: 38008021 DOI: 10.1016/j.talanta.2023.125466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Human health is greatly threatened by bacterial infection, which raises the risk of serious illness and death in humans. For early screening and accurate treatment of bacterial infection, there is a strong desire to undertake ultrasensitive detection and effective killing of pathogenic bacteria. Herein, a novel surface-enhanced Raman scattering (SERS) biosensor based on sandwich structure consisting of capture probes/bacteria/SERS tags was established for specific identification, capture and photothermal killing of Escherichia coli (E. coli). Finite-difference time-domain (FDTD) technique was used to simulate the electromagnetic field distribution of capture probes, SERS tags and sandwich-type SERS substrate, and a possible SERS enhancement mechanism based on sandwich structure was presented and discussed. Sandwich-type SERS biosensor successfully achieved distinctive identification and magnetic beneficiation of E. coli. In addition, a single SERS substrate, including capture probes and SERS tags, could also achieve outstanding photothermal effects as a consequence of localized surface plasmon resonance (LSPR) effect. Intriguingly, sandwich-type SERS biosensor demonstrated a higher photothermal conversion efficiency (50.03 %) than the single substrate, which might be attributed to the formation of target bacterial clusters. The superior biocompatibility and the low toxicity of the sandwich-type biosensor were confirmed. Our approach offers a fresh method for constructing sandwich-type biosensor with multiple SERS hotspots based on extremely effective hybrid plasmonic nanoparticles, and has a wide range of potential applications in the recognition and treatment of bacteria.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Jingru Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Qiuxu Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Xue Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| |
Collapse
|
14
|
Lv E, Wang T, Wang J, Sun R, Zhang C, Yu J, Li Z, Man B, Zhao X, Zhang C. Cascade Bowl Multicavity Structure for In Situ Surface-Enhanced Raman Scattering Detection of Organic Gas Molecules. J Phys Chem Lett 2024; 15:2247-2254. [PMID: 38380862 DOI: 10.1021/acs.jpclett.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.
Collapse
Affiliation(s)
- Enze Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Junkun Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Ruijing Sun
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Chengrui Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
15
|
Wang H, An G, Xu S, Xu Q. Fe and Cu Intercalations Enhance SERS of MoO 3 through Different Mechanistic Pathways. Chemistry 2023:e202303391. [PMID: 38116857 DOI: 10.1002/chem.202303391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Surface Enhanced Raman spectroscopy (SERS) is a molecular-specific analytical technique with various applications. Although electromagnetic (EM) and chemical (CM) mechanisms have been proposed to be the main origins of SERS, exploring highly sensitive SERS substrates with well-defined mechanistic pathways remains challenging. Since surface and electronic structures of substrates were crucial for SERS activity, zero-valent transition metals (Fe and Cu) were intercalated into MoO3 to modulate its surface and electronic structures, leading to unexceptional high enhancement factors (1.0×108 and 1.1×1010 for Fe-MoO3 and Cu-MoO3 , respectively) with decent reproducibility and stability. Interestingly, different mechanistic pathways (CM and EM) were proposed for Fe-MoO3 and Cu-MoO3 according to mechanistic investigations. The different mechanisms of Fe-MoO3 and Cu-MoO3 were rationalized by the electronic structures of the intercalated Fe(0) and Cu(0), which modulates the surface and electronic structures of Fe-MoO3 and Cu-MoO3 to differentiate their SERS mechanisms.
Collapse
Affiliation(s)
- Hengan Wang
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Guangyu An
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Song Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Prof. Qun Xu, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
16
|
Liu H, Li Q, Ma Y, Wang S, Wang Y, Zhao B, Zhao L, Jiang Z, Xu L, Ruan W. Study of charge transfer contribution in Surface-Enhanced Raman scattering (SERS) based on indium oxide nanoparticle substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123168. [PMID: 37515886 DOI: 10.1016/j.saa.2023.123168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has outstanding merits in biochemical molecular analysis, and the development of new SERS substrates is the focus of research. Herein, In2O3 nanoparticles (NPs) were synthesized by a high temperature pyrolysis method with cubic phase and small particle size at 10 nm. The structures and properties of In2O3 NPs were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM) and other characterization methods. Additionally, the SERS spectra of In2O3-MBA with the enhancement factor (EF) up to 1.22 × 104 is discussed. The results demonstrate that there is a charge transfer (CT) effect revealed between the adsorbed molecules of 4-mercaptobenzoic acid (4-MBA) and the substrates of In2O3 NPs, and it could be excited by long wavelength energy. Based on the In2O3 NPs, the study is beneficial to develop more potential semiconductor SERS substrates.
Collapse
Affiliation(s)
- Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Qianwen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Siyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Lichun Zhao
- Changchun Shunfeng New Materials Co., Ltd. & Jilin Shunfeng Agricultural Technology Co., Ltd., Changchun 130114, PR China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| | - Lili Xu
- Changchun Shunfeng New Materials Co., Ltd. & Jilin Shunfeng Agricultural Technology Co., Ltd., Changchun 130114, PR China.
| | - Weidong Ruan
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
17
|
Adesoye S, Al Abdullah S, Kumari A, Pathiraja G, Nowlin K, Dellinger K. Au-Coated ZnO Surface-Enhanced Raman Scattering (SERS) Substrates: Synthesis, Characterization, and Applications in Exosome Detection. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:554. [PMID: 39371047 PMCID: PMC11450680 DOI: 10.3390/chemosensors11110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Developing a biomolecular detection method that minimizes photodamage while preserving an environment suitable for biological constituents to maintain their physiological state is expected to drive new diagnostic and mechanistic breakthroughs. In addition, ultra-sensitive diagnostic platforms are needed for rapid and point-of-care technologies for various diseases. Considering this, surface-enhanced Raman scattering (SERS) is proposed as a non-destructive and sensitive approach to address the limitations of fluorescence, electrochemical, and other optical detection techniques. However, to advance the applications of SERS, novel approaches that can enhance the signal of substrate materials are needed to improve reproducibility and costs associated with manufacture and scale-up. Due to their physical properties and synthesis, semiconductor-based nanostructures have gained increasing recognition as SERS substrates; however, low signal enhancements have offset their widespread adoption. To address this limitation and assess the potential for use in biological applications, zinc oxide (ZnO) was coated with different concentrations (0.01-0.1 M) of gold (Au) precursor. When crystal violet (CV) was used as a model target with the synthesized substrates, the highest enhancement was obtained with ZnO coated with 0.05 M Au precursor. This substrate was subsequently applied to differentiate exosomes derived from three cell types to provide insight into their molecular diversity. We anticipate this work will serve as a platform for colloidal hybrid SERS substrates in future bio-sensing applications.
Collapse
Affiliation(s)
- Samuel Adesoye
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| |
Collapse
|
18
|
Li L, Zhang L, Gou L, Wei S, Hou X, Wu L. Au Nanoparticles Decorated CoP Nanowire Array: A Highly Sensitive, Anticorrosive, and Recyclable Surface-Enhanced Raman Scattering Substrate. Anal Chem 2023. [PMID: 37450688 DOI: 10.1021/acs.analchem.3c01282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Metal-semiconductor composites are promising candidates for surface-enhanced Raman scattering (SERS) substrates, but their inert basal plane, poor active sites, and limited stability hamper their commercial prospects. Herein, we report a three-dimensional CoP nanowire array decorated with Au nanoparticles on carbon cloth (Au@CoP/CC) as a self-supporting flexible SERS substrate. The Au nanoparticles spontaneously grew on the surface of the CoP nanowire array to form efficient SERS hot spots by a redox reaction with HAuCl4 without any additional reducing agents. Such Au@CoP/CC substrate exhibited a limit of detection of 10-11 M using rhodamine 6G as a model dye with outstanding corrosion resistance ability even under extreme acid and alkali conditions, which is better than many recently reported Au-based SERS substrates. Finite-difference time-domain simulation results demonstrated that Au@CoP/CC can provide a high density of regions with intense local electric field enhancement. Moreover, Au@CoP/CC can degrade target organic dyes for the self-cleaning and reproduction of SERS-active substrates under visible light irradiation. This work provides a novel means of using the plasmonic metal-transition metal phosphide composites for high-performance SERS sensing and photodegradation.
Collapse
Affiliation(s)
- Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Longcheng Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- Key Lab of Green Chem and Tech of MOE at College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
19
|
Zhu L, Meng Z, Hu S, Zhao T, Zhao B. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22730-22736. [PMID: 37125659 DOI: 10.1021/acsami.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although there has been intense research on plasmon-induced charge transfer within metal/semiconductor heterostructures, previous studies have all focused on the surface plasmonic resonance (SPR) of only noble metals. Herein and for the first time, we observe and take into account the plasmonic coupling between SPR of both noble-metal and semiconductor nanostructures. A W18O49/Ag heterostructure composed of metallic Ag nanoparticles (Ag NPs) and semiconducting W18O49 nanowires (W18O49 NWs) is designed and fabricated, which exhibits a broad and strong SPR absorption in the visible wavelength range. This SPR band is attributed to the SPR coupling between the SPR of both Ag NPs and W18O49 NWs. Surface-enhanced Raman scattering (SERS) is then used to reveal the interactions between the metal SPR, semiconductor SPR, and the heterostructure's charge transfer (CT) process, demonstrating that such coupled SPR enhanced the heterostructure's internal CT and SERS signals. Finally, we proposed a new coupled-plasmon-induced charge transfer mechanism to interpret the improved CT efficiency between the SERS substrate and molecules. Our work provides insight for further studies on plasmonic effects and interfacial charge transfer in metal/semiconductor heterostructures.
Collapse
Affiliation(s)
- Lin Zhu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Zhen Meng
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Saizhen Hu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Tiancong Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Bing Zhao
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
20
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
21
|
Zhou T, Huang J, Zhao W, Guo R, Cui S, Li Y, Zhang X, Liu Y, Zhang Q. Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4232. [PMID: 36500854 PMCID: PMC9738658 DOI: 10.3390/nano12234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 μL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs' SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection.
Collapse
Affiliation(s)
- Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuqing Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
22
|
Tavakkoli Yaraki M, Tukova A, Wang Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. NANOSCALE 2022; 14:15242-15268. [PMID: 36218172 DOI: 10.1039/d2nr03005e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells and their derived extracellular vesicles (EVs) or exosomes contain unique molecular signatures that could be used as biomarkers for the detection of severe diseases such as cancer, as well as monitoring the treatment response. Revealing these molecular signatures requires developing non-invasive ultrasensitive tools to enable single molecule/cell-level detection using a small volume of sample with low signal-to-noise ratio background and multiplex capability. Surface-enhanced Raman scattering (SERS) can address the current limitations in studying cells and EVs through two main mechanisms: plasmon-enhanced electric field (the so-called electromagnetic mechanism (EM)), and chemical mechanism (CM). In this review, we first highlight these two SERS mechanisms and then discuss the nanomaterials that have been used to develop SERS biosensors based on each of the aforementioned mechanisms as well as the combination of these two mechanisms in order to take advantage of the synergic effect between electromagnetic enhancement and chemical enhancement. Then, we review the recent advances in designing label-aided and label-free SERS biosensors in both colloidal and planar systems to investigate the surface biomarkers on cancer cells and their derived EVs. Finally, we discuss perspectives of emerging SERS biosensors in future biomedical applications. We believe this review article will thus appeal to researchers in the field of nanobiotechnology including material sciences, biosensors, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
23
|
Tang C, Park E, Guo S, Jin S, Zhao L, Chen L, Jung YM. Evaluation of SERS activity for cosputtered Ag-ZnX@PS (X = O, S, Se) composites: Carrier density dependence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121405. [PMID: 35617837 DOI: 10.1016/j.saa.2022.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ag-ZnX (X = O, S, Se) composites coated on polystyrene (PS) arrays (Ag-ZnO@PS, Ag-ZnS@PS, Ag-ZnSe@PS) were successfully fabricated by using cosputtering technology. We found that ZnX doping decreased the carrier densities of these composites compared to that of pure Ag@PS, which was due to redistribution of electrons between Ag and ZnX. Thus, the carrier density of Ag was decreased, and the surface plasmon resonance (SPR) of Ag was redshifted in the Ag-ZnX composites. As the redshift of the SPR of Ag induced a high SPR contribution to the surface-enhanced Raman scattering (SERS), the SPR and charge transfer (CT) contributions were simultaneously increased with increasing carrier density in the Ag-ZnX composites. This study opens a new path to designing metal-semiconductor composites with controllable carrier density. Regulation of the carrier density will be of great help in understanding SPR and CT contributions.
Collapse
Affiliation(s)
- Chenghao Tang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Lina Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China.
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
24
|
Huang J, Zhou T, Zhao W, Zhang M, Zhang Z, Lai W, Kadasala NR, Liu H, Liu Y. Magnetic-Core-Shell-Satellite Fe 3O 4-Au@Ag@(Au@Ag) Nanocomposites for Determination of Trace Bisphenol A Based on Surface-Enhanced Resonance Raman Scattering (SERRS). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3322. [PMID: 36234450 PMCID: PMC9565892 DOI: 10.3390/nano12193322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
As a typical representative of endocrine-disrupting chemicals (EDCs), bisphenol A (BPA) is a common persistent organic pollutant in the environment that can induce various diseases even at low concentrations. Herein, the magnetic Fe3O4-Au@Ag@(Au@Ag) nanocomposites (CSSN NCs) have been prepared by self-assembly method and applied for ultra-sensitive surface-enhanced resonance Raman scattering (SERRS) detection of BPA. A simple and rapid coupling reaction of Pauly's reagents and BPA not only solved the problem of poor affinity between BPA and noble metals, but also provided the SERRS activity of BPA azo products. The distribution of hot spots and the influence of incremental introduction of noble metals on the performance of SERRS were analyzed by a finite-difference time-domain (FDTD) algorithm. The abundance of hot spots generated by core-shell-satellite structure and outstanding SERRS performance of Au@Ag nanocrystals were responsible for excellent SERRS sensitivity of CSSN NCs in the results. The limit of detection (LOD) of CSSN NCs for BPA azo products was as low as 10-10 M. In addition, the saturation magnetization (Ms) value of CSSN NCs was 53.6 emu·g-1, which could be rapidly enriched and collected under the condition of external magnetic field. These magnetic core-shell-satellite NCs provide inspiration idea for the tailored design of ultra-sensitive SERRS substrates, and thus exhibit limitless application prospects in terms of pollutant detection, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Min Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhibo Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wangsheng Lai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | | | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
25
|
Zhang T, Quan X, Cao N, Zhang Z, Li Y. Label-Free Detection of DNA via Surface-Enhanced Raman Spectroscopy Using Au@Ag Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183119. [PMID: 36144907 PMCID: PMC9505376 DOI: 10.3390/nano12183119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/12/2023]
Abstract
DNA is a building block of life; surface-enhanced Raman spectroscopy (SERS) has been broadly applied in the detection of biomolecules but there are challenges in obtaining high-quality DNA SERS signals under non-destructive conditions. Here, we developed a novel label-free approach for DNA detection based on SERS, in which the Au@AgNPs core-shell structure was selected as the enhancement substrate, which not only solved the problem of the weak enhancement effect of gold nanoparticles but also overcame the disadvantage of the inhomogeneous shapes of silver nanoparticles, thereby improving the sensitivity and reproducibility of the SERS signals of DNA molecules. The method obtained SERS signals for four DNA bases (A, C, G, and T) without destroying the structure, then further detected and qualified different specific structures of DNA molecules. These results promote the application of SERS technology in the field of biomolecular detection.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xubin Quan
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Naisi Cao
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhaoying Zhang
- The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
26
|
Huang J, Zhou T, Zhao W, Cui S, Guo R, Li D, Reddy Kadasala N, Han D, Jiang Y, Liu Y, Liu H. Multifunctional magnetic Fe 3O 4/Cu 2O-Ag nanocomposites with high sensitivity for SERS detection and efficient visible light-driven photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs). J Colloid Interface Sci 2022; 628:315-326. [PMID: 35998457 DOI: 10.1016/j.jcis.2022.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Dan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | | | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China.
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
27
|
Wang X, Zhang E, Shi H, Tao Y, Ren X. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Analyst 2022; 147:1257-1272. [PMID: 35253817 DOI: 10.1039/d1an02165f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Erjin Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huimin Shi
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
28
|
Zhu L, Li P, Sun H, Han X, Xu Y, Wang X, Liu B, Ozaki Y, Zhao B. An investigation of the effect of high-pressure on charge transfer in dye-sensitized solar cells based on surface-enhanced Raman spectroscopy. NANOSCALE 2022; 14:373-381. [PMID: 34920450 DOI: 10.1039/d1nr06250f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial charge transfer (CT) that plays an important role in enhancing the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) has not always been fully explored. Here, a TiO2@N719@Ag DSSC system was constructed, and the CT processes have been monitored by surface-enhanced Raman scattering (SERS) spectra. Meanwhile, it is well known that as one of the most common external stimuli, high pressure can increase the free carrier density of TiO2 NPs and cause the band gap to narrow. In the high pressure SERS experiment, we observed a significant enhancement of the N719 dye in the TiO2@N719@Ag system up to 2.48 GPa, which is consistent with the variation trend of the charge transfer degree (ρCT). It is indicated that band gap changes will strongly affect the CT processes, further influence the SERS signal intensity (or ρCT), and thus increase the CT probability of DSSCs. Furthermore, the decoration of Ag NPs in the TiO2@N719@Ag DSSC system can introduce localized surface plasmon resonance (LSPR), enhance the light trapping ability and offer additional CT pathways. Importantly, it is possible to improve the photoelectric conversion performance of DSSCs via the high pressure method and the introduction of Ag NPs. Finally, in order to observe the CT process of DSSCs more clearly, the models describing the CT mechanism have been proposed. SERS spectroscopy is expected to be a promising technique for the exploration of the interfacial CT behavior in DSSC devices, which may further broaden the thoughts of improvement of efficiency of the cells.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Peng Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
- Weichai Power Co., Ltd, China
| | - Huanhuan Sun
- State Key Lab Superhard Materials, Jilin University, Changchun 130012, China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Yitong Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Xiaolei Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Bingbing Liu
- State Key Lab Superhard Materials, Jilin University, Changchun 130012, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
30
|
Li J, Li X, Liang D, Zhang X, Lin Q, Hao L. Preparation and Antibacterial Performances of Electrocatalytic Zinc Oxide Nanoparticles with Diverse Morphologies. J Biomed Nanotechnol 2021; 17:1824-1829. [PMID: 34688327 DOI: 10.1166/jbn.2021.3144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study exploits the potential of zinc oxide nanoparticles (ZnO-NPs) with diverse morphologies as catalysts and antibacterial agent. Spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were prepared by microemulsion method, solvent heat method and hydrothermal method, respectively. The structural characterizations of samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD results revealed the formation of spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were all wurtzite crystal structure. SEM results showed that spherical ZnO-NPs had an average particle size of 30-40 nm, rod-shaped ZnO-NPs were about 500 nm long and 100 nm wide with obvious hexagonal crystals. Flower-shaped ZnO-NPs had a three-dimensional appearance with obvious petals. Results of electrochemical HER (Hydrogen evolution reaction) experiments revealed that spherical ZnO-NPs exhibited the highest electrocatalytic activity at the lowest potential voltage due to their largest specific surface area. The antibacterial property of ZnO-NPs samples were studied by the optical density method and disc diffusion method. All samples had antibacterial effects against E. coli. and flower-shaped ZnO-NPs showed the best antibacterial activity due to the largest surface area in comparison with spherical ZnO-NPs and rod-shaped ZnO-NPs, which promised the maximum Zn2+ release as bactericide mechanism that registered in the case of different ZnO-NPs morphologies.
Collapse
Affiliation(s)
- Junlin Li
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Xiangfei Li
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Dong Liang
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Xiaojuan Zhang
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Qing Lin
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Lingyun Hao
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| |
Collapse
|