1
|
Li Y, Zhang Q, Dai Z, Wang R, Li Z, Huang Y, Lai R, Wei F, Shao F. Surfactant-Assisted Construction of Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501580. [PMID: 40287970 DOI: 10.1002/advs.202501580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Indexed: 04/29/2025]
Abstract
Covalent organic frameworks (COFs), characterized by their unique ordered pore structures, chemical diversity, and high degree of designability, have demonstrated immense application potential across multiple fields. However, traditional synthesis methods often encounter challenges such as low crystallinity and uneven morphology. The introduction of surfactants has opened up new pathways for the synthesis of COFs. Leveraging their intermolecular interactions and self-assembly properties, surfactants can effectively regulate the nucleation, growth processes, and ultimate structure and properties of COFs. This paper systematically reviews the latest research achievements and future trends in surfactant-assisted COF synthesis, emphasizing the crucial role of surfactants as key additives in the preparation of COFs. Surfactants not only facilitate uniform nucleation and growth of COFs, enhancing the crystallinity and structural order of the products but also enable precise and diverse regulation of the dimensionality, morphology, and structure of COFs. Furthermore, by influencing the dispersion and processability of COFs, surfactants enhance their practicality and workability. Finally, the paper presents some prospects for the challenges and future opportunities in this emerging research area.
Collapse
Affiliation(s)
- Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Renzhong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhaohua Li
- Suzhou Laboratory, Suzhou, 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou, 215100, China
| | | | - Facai Wei
- Suzhou Laboratory, Suzhou, 215100, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215109, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Suzhou Laboratory, Suzhou, 215100, China
| |
Collapse
|
2
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Liu L, Yu R, Yin L, Zhang N, Zhu G. Porous organic framework membranes based on interface-induced polymerisation: design, synthesis and applications. Chem Sci 2024; 15:1924-1937. [PMID: 38332830 PMCID: PMC10848777 DOI: 10.1039/d3sc05787a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
Porous organic frameworks (POFs) are novel porous materials that have attracted much attention due to their extraordinary properties, such as high specific surface area, tunable pore size, high stability and ease of functionalisation. However, conventional synthesised POFs are mostly large-sized particles or insoluble powders, which are difficult to recycle and have low mass transfer efficiencies, limiting the development of their cutting-edge applications. Therefore, processing POF materials into membrane structures is of great significance. In recent years, interface engineering strategies have proved to be efficient methods for the formation of POF membranes. In this perspective, recent advances in the use of interfaces to prepare POF membranes are reviewed. The challenges of this strategy and the potential applications of the formed POF membranes are discussed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Ruihe Yu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Liying Yin
- Department of Chemistry, Northeast Normal University Changchun China
- School of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University Changchun China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University Changchun China
| |
Collapse
|
4
|
Raptakis A, Croy A, Dianat A, Gutierrez R, Cuniberti G. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. RSC Adv 2022; 12:12283-12291. [PMID: 35480357 PMCID: PMC9027257 DOI: 10.1039/d2ra01007k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Exploiting a similarity metric to classify COFs according to the degree of π-electron conjugation of their bridges.
Collapse
Affiliation(s)
- Antonios Raptakis
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| |
Collapse
|