1
|
Li Z, Wang B, Dong Y, Jie G. A multi-modal biosensing platform based on Ag-ZnIn 2S 4@Ag-Pt nanosignal probe-sensitized UiO-66 for ultra-sensitive detection of penicillin. Food Chem 2024; 444:138665. [PMID: 38335689 DOI: 10.1016/j.foodchem.2024.138665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
We designed a multi-modal biosensing platform for versatile detection of penicillin based on a unique Ag-ZnIn2S4@Ag-Pt signal probe-sensitized UiO-66 metal-organic framework. Firstly, a large number of Ag-ZnIn2S4 quantum dots (AZIS QDs) were attached to Ag-Pt NPs, preparing a new multi-signal probe AZIS QDs@Ag-Pt NPs with excellent photoelectrochemistry (PEC), electrochemiluminescence (ECL), and fluorescence (FL) signals. Moreover, the AZIS QDs@Ag-Pt NPs signal probe can well match the energy level of UiO-66 metal-organic framework (MOF) with good photoelectric property, which can reverse the PEC current of UiO-66 to reduce false positives in detection. When penicillin was present, it bound to its aptamer to release the multifunctional signal probes, which can generate PEC, ECL, and PL signals, thus realizing ultrasensitive detection of penicillin by multi-signals. This work creates a novel three-signal QDs probe, which makes a great contribution to multi-mode photoelectric sensing analysis. The LOD of this work (3.48 fg·mL-1) was much lower than the MRLs (Maximum Residue Levels) established by the EU (4 ng·mL-1). The newly developed multi-mode biosensor has good practical application values in various biological detection, food assay, and early disease diagnosis.
Collapse
Affiliation(s)
- Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongxin Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
2
|
Zhang X, Ding W, Jiao C, Kang X, Liu Z. Ultrasensitive Eu-Based MOF Luminescence Sensor for Clenbuterol Visible Recognition. Inorg Chem 2024; 63:3383-3392. [PMID: 38315637 DOI: 10.1021/acs.inorgchem.3c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Clenbuterol (CLB) as an illegal feed additive may cause a great security risk to food safety. However, convenient and efficient detection means for CLB in practical application remain a formidable challenge. Herein, a stable Eu-based organic framework {[H2N(CH3)2]2[Eu2(ttca)2]·H2O}n (compound 1) (H4ttca = [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid) has been harvested, exhibiting excellent chemical stability and thermal stability. Luminescence investigation reveals that compound 1 can sensitively and selectively detect CLB without being affected by different components from simulated serum and urine (limit detection: 22.7 nM). Furthermore, sensor 1 can also be applicable to CLB recognition in real swine feeds, presenting excellent anti-interference performance. The good cyclicity of compound 1 endows CLB determination with many advantages: low cost, high stability, and simplicity. Importantly, in view of the indication of the luminescence color (red to blue), test membranes were fabricated and employed for convenient and fast CLB detection, providing a valuable scheme for the visual monitoring of CLB in meat products. This work enriches rare earth metal compounds and luminescence sensor portfolios and breaks the concentration record (nM) for detecting CLB compared with reported complex materials, providing an effective monitoring platform for CLB visually.
Collapse
Affiliation(s)
- Xudong Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| | - Wenyu Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Chuanbao Jiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xiaomin Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
3
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
4
|
He Q, Bai J, Wang H, Liu S, Jun SC, Yamauchi Y, Chen L. Emerging Pristine MOF-Based Heterostructured Nanoarchitectures: Advances in Structure Evolution, Controlled Synthesis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303884. [PMID: 37625077 DOI: 10.1002/smll.202303884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
|
6
|
Sontakke AD, Bhattacharjee A, Fopase R, Pandey LM, Purkait MK. One-pot, sustainable and room temperature synthesis of graphene oxide-impregnated iron-based metal-organic framework (GO/MIL-100(Fe)) nanocarriers for anticancer drug delivery systems. JOURNAL OF MATERIALS SCIENCE 2022; 57:19019-19049. [DOI: 10.1007/s10853-022-07773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2025]
|
7
|
CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|