1
|
Zhao H, Wang J, He M, Li S, Guo H, Kan D, Qiu H, Chen L, Gu J. Electromagnetic Interference Shielding Films: Structure Design and Prospects. SMALL METHODS 2025; 9:e2401324. [PMID: 39385653 DOI: 10.1002/smtd.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Indexed: 10/12/2024]
Abstract
The popularity of portable and wearable flexible electronic devices, coupled with the rapid advancements in military field, requires electromagnetic interference (EMI) shielding materials with lightweight, thin, and flexible characteristics, which are incomparable for traditional EMI shielding materials. The film materials can fulfill the above requirements, making them among the most promising EMI shielding materials for next-generation electronic devices. Meticulously controlling structure of composite film materials while optimizing the electromagnetic parameters of the constructed components can effectively dissipate and transform electromagnetic wave energy. Herein, the review systematically outlines high-performance EMI shielding composite films through structural design strategies, including homogeneous structure, layered structure, and porous structure. The attenuation mechanism of EMI shielding materials and the evaluation (Schelkunoff theory and calculation theory) of EMI shielding performance are introduced in detail. Moreover, the effect of structure attributes and electromagnetic properties of composite films on the EMI shielding performance is analyzed, while summarizing design criteria and elucidating the relevant EMI shielding mechanism. Finally, the future challenges and potential application prospects of EMI shielding composite films are prospected. This review provides crucial guidance for the construction of advanced EMI shielding films tailored for highly customized and personalized electronic devices in the future.
Collapse
Affiliation(s)
- Hui Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Jingfeng Wang
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shuai Li
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Dongxiao Kan
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi, 710016, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lixin Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
2
|
Slejko EA, Carraro G, Huang X, Smerieri M. Advances in the Fabrication, Properties, and Applications of Electrospun PEDOT-Based Conductive Nanofibers. Polymers (Basel) 2024; 16:2514. [PMID: 39274146 PMCID: PMC11398091 DOI: 10.3390/polym16172514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The production of nanofibers has become a significant area of research due to their unique properties and diverse applications in various fields, such as biomedicine, textiles, energy, and environmental science. Electrospinning, a versatile and scalable technique, has gained considerable attention for its ability to fabricate nanofibers with tailored properties. Among the wide array of conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising material due to its exceptional conductivity, environmental stability, and ease of synthesis. The electrospinning of PEDOT-based nanofibers offers tunable electrical and optical properties, making them suitable for applications in organic electronics, energy storage, biomedicine, and wearable technology. This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into leveraging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers. Furthermore, the review identifies current challenges, future directions, and potential strategies to address scalability, reproducibility, stability, and integration into practical devices, offering a comprehensive resource on conductive nanofibers.
Collapse
Affiliation(s)
- Emanuele Alberto Slejko
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Carraro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| | - Xiongchuan Huang
- School of Information Science and Technology, Fudan University, Handan Rd. 220, Shanghai 200433, China
| | - Marco Smerieri
- IMEM-CNR, Institute of Materials for Electronics and Magnetism of the National Research Council of Italy, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
3
|
Moaref R, Shajari S, Sundararaj U. From Waste to Value Added Products: Manufacturing High Electromagnetic Interference Shielding Composite from End-of-Life Vehicle (ELV) Waste. Polymers (Basel) 2023; 16:120. [PMID: 38201785 PMCID: PMC10780672 DOI: 10.3390/polym16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The use of plastics in automobiles is increasing dramatically due to their advantages of low weight and cost-effectiveness. Various products can be manufactured by recycling end-of-life vehicle (ELV) plastic waste, enhancing sustainability within this sector. This study presents the development of an electromagnetic interference (EMI) shield that can be used for protecting electronic devices in vehicles by recycling waste bumpers of ethylene propylene diene monomer (EPDM) rubber from ELVs. EPDM waste was added to a unique combination of 40/60: PP/CaCO3 master batch and conductive nanofiller of carbon nanotubes using an internal melt mixing process. This nanocomposite was highly conductive, with an electrical conductivity of 5.2×10-1S·cm-1 for 5 vol% CNT in a 30 wt% EPDM/70 wt% PP/CaCO3 master batch and showed a high EMI shielding effectiveness of 30.4 dB. An ultra-low percolation threshold was achieved for the nanocomposite at 0.25 vol% CNT. Waste material in the composite improved the yield strain by about 46% and strain at break by 54% in comparison with the same composition without waste. Low cost and light-weight fabricated composite from ELV waste shows high EMI SE for application in electronic vehicles and opens a new path to convert waste to wealth.
Collapse
Affiliation(s)
- Roxana Moaref
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
| | - Shaghayegh Shajari
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
| |
Collapse
|
4
|
Qin Q, Hu Y, Guo S, Yang Y, Lei T, Cui Z, Wang H, Qin S. PVDF-based composites for electromagnetic shielding application: a review. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03506-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Pei X, Liu G, Shao R, Yu R, Chen R, Liu D, Wang W, Min C, Liu S, Xu Z. 3D‐printing carbon nanotubes/Ti
3
C
2
T
x
/chitosan composites with different arrangement structures based on ball milling for EMI shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyuan Pei
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Guangde Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruiqi Shao
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Rongrong Yu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Runxiao Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Dong Liu
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang China
| | - Wei Wang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Chunying Min
- Research School of Polymeric Materials, School of Materials Science & Engineering Jiangsu University Zhenjiang China
| | - Shengkai Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
6
|
Zhang Y, Wu H, Guo S. Sandwich-Structured Surface Coating of a Silver-Decorated Electrospun Thermoplastic Polyurethane Fibrous Film for Excellent Electromagnetic Interference Shielding with Low Reflectivity and Favorable Durability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40351-40360. [PMID: 36017596 DOI: 10.1021/acsami.2c11971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nowadays, high efficiency and low reflection electromagnetic interference (EMI) shielding materials have a wide potential application of electronic fields. However, it is still challenging to achieve long-term durability under external mechanical deformations or other harsh conditions. Herein, sandwich-structured surface coatings with a mixture of polydimethylsiloxane (PDMS)/carboxylated multiwalled carbon nanotube and magnetic ferriferous oxide nanoparticle hybrid fillers (MWCNTs-COOH/Fe3O4, MFs) are introduced onto a silver-decorated electrospun thermoplastic polyurethane (TPU) fibrous film to achieve both outstanding low reflective EMI shielding and favorable durability. The surface coatings not only act as an effective absorbing layer but also provide a micro-nano hierarchical superhydrophobic surface. The resultant film shows a remarkable conductivity (361.0 S/cm), an excellent EMI shielding effectiveness (SE) approaching 85.4 dB, and a low reflection coefficient value of 0.61. Interestingly, the obtained film still maintains an excellent EMI SE even after mechanical deformations or being immersed in strong acidic solution, alkaline solution, and organic solvents for 6 h. This work opens a new avenue for the design of low reflective EMI shielding films under harsh environments.
Collapse
Affiliation(s)
- Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Electromagnetic Interference Shielding with Electrospun Nanofiber Mats—A Review of Production, Physical Properties and Performance. FIBERS 2022. [DOI: 10.3390/fib10060047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With a steadily increasing number of machines and devices producing electromagnetic radiation, especially, sensitive instruments as well as humans need to be shielded from electromagnetic interference (EMI). Since ideal shielding materials should be lightweight, flexible, drapable, thin and inexpensive, textile fabrics belong to the often-investigated candidates to meet these expectations. Especially, electrospun nanofiber mats are of significant interest since they can not only be produced relatively easily and cost efficiently, but they also enable the embedding of functional nanoparticles in addition to thermal or chemical post-treatments to reach the desired physical properties. This paper gives an overview of recent advances in nanofiber mats for EMI shielding, discussing their production, physical properties and typical characterization techniques.
Collapse
|
8
|
Huang X, Wu Z, Zhang S, Xiao W, Zhang L, Wang L, Xue H, Gao J. Mechanically robust Janus nanofibrous membrane with asymmetric wettability for high efficiency emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128250. [PMID: 35093748 DOI: 10.1016/j.jhazmat.2022.128250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Water pollution caused by oil leakage or oily sewage has seriously threatened the ecological environment and human health. It remains a tough task for scientists to develop versatile materials to purify different kinds of oily wastewater. In this study, we propose a facile "carbon nanotubes (CNTs) decoration and nanofibrous membrane integration" method to prepare a mechanical robust Janus membrane (JM) composed of a superhydrophilic nanofiber composite layer and a hydrophobic nanofiber composite layer. The asymmetric wettability can be controlled by tuning the thickness of the hydrophobic layer. The nanofiber composite in both two layers possesses a core-shell structure, guaranteeing the excellent flexibility and stretchability of the JM. In addition, the strong interfacial compatibility between the two layers ensures the stability and durability of the JM even after multiple stretching. More importantly, the JM could realize on-demand separation of different kinds of oily wastewater with high separation flux and separation efficiency, including oil/water mixtures with different oil densities, oil-in-water emulsions and water-in-oil emulsions. Furthermore, the JM exhibits cycling stability and long-term serviceability for the emulsion separation. The mechanically robust and stretchable JM has promising applications in purification of various oil contaminated wastewater.
Collapse
Affiliation(s)
- Xuewu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Zefeng Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Shu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Wei Xiao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China; Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University,Building 22, Qinyuan, No.2318, Yuhangtang Road, Cangqian Street, Yuhang District, Hangzhou 311121, China.
| |
Collapse
|
9
|
Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps. J Colloid Interface Sci 2022; 613:396-405. [PMID: 35042037 DOI: 10.1016/j.jcis.2022.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
With the rapid development of wireless telecommunication technologies, it is of fundamental and technological significance to design and engineer high-performance shielding materials against electromagnetic interference (EMI). Herein, a three-step procedure is developed to produce hydrophobic, flexible nanofiber films for EMI shielding and pressure sensing based on hydrolysate of waste leather scraps (HWLS): (i) electrospinning preparation of HWLS/polyacrylonitrile (PAN) nanofiber films, (ii) adsorption of silver nanowires (AgNWs) onto HWLS/PAN nanofiber films, and (iii) coating of HWLS/PAN/AgNWs nanofiber films with polydimethylsiloxane (PDMS). Scanning electron microscopy studies show that AgNWs are interweaved with HWLS/PAN nanofibers to form a conductive network, exhibiting an electrical conductivity of 105 S m-1 and shielding efficiency of 65 dB for a 150 μm-thick HWLS/PAN/AgNWs film. The HWLS/PAN/AgNWs/PDMS film displays an even better electromagnetic shielding efficiency of 80 dB and a water contact angle of 132.5°. Results from this study highlight the unique potential of leather solid wastes for the production of high-performance, environmentally friendly, and low-cost EMI shielding materials.
Collapse
|