1
|
Batsaikhan E, Hayashi M, Sainbileg B. Spin: an essential factor in advancing the oxygen evolution reaction on 2D Fe-MOF. Phys Chem Chem Phys 2025. [PMID: 40396575 DOI: 10.1039/d5cp01173f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The oxygen evolution reaction (OER) is a crucial component in oxygen-involving reactions and plays a vital role in developing sustainable energy conversion technologies. However, it still requires developing efficient catalysts that can overcome the sluggish reaction kinetics. Recent studies on oxygen electrocatalysis predominantly focussed on the thermodynamic viewpoint of oxygen adsorption, while the catalytic role of spin remains greatly elusive. In this work, we investigated the impact of spin on the OER performance of a two-dimensional iron-based metal-organic framework (2D Fe-MOF) using spin-polarized first-principles calculations. Our results reveal that the pristine Fe-MOF in the high spin state exhibits electronic properties suitable for an OER electrocatalyst. Even after adsorption, the Fe-MOF preserves its high spin state; such magnetic stability ensures the consistent application of the OER. Moreover, adsorption on a 2D Fe-MOF is spin-dependent. It validates that the spin states can regulate the adsorption strength for the OER. Remarkably, the spin-sensitive 2D Fe-MOF yields a significantly low overpotential of 0.49 V, comparable to precious catalysts. Furthermore, the spin-related charge transfer and orbital interaction originate from the overlapping between the O pz of the oxygen intermediates and the Fe dz2 of the Fe active site. This reveals that the OER on the Fe-MOF is dependent on the selective spin-orbital. Overall, the spin is inevitable in enhancing the OER process, making our work valuable in the development of MOF catalysts. Our finding enriches the atomistic understanding of the OER in the development of noble-metal-free MOF catalysts.
Collapse
Affiliation(s)
- Erdembayalag Batsaikhan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
- National Center for Theoretical Sciences, Taipei 106, Taiwan
| | - Batjargal Sainbileg
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
2
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Liu J, He Q, Zou W, Wu M, Rego CRC, Xia C, Xiong Y, Zhao Y. Modulation of d-Orbital Interactions in Dual-Atom Catalysts for Enhanced Polysulfide Anchoring and Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60180-60188. [PMID: 39436993 DOI: 10.1021/acsami.4c11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Modulating the electronic structure is essential for improving the anchoring and catalytic capabilities of catalysts in lithium-sulfur batteries (LSBs). This study delves into the modulation of d-orbitals in transition metal dual-atom catalysts (DACs) supported by boron nitride and graphene (BNC) hybrid sheets for LSBs. This study reveals that the d-band center of the DACs, a key determinant of material chemical properties, is primarily determined by the electronic configuration of the dyz and dx2-y2 orbitals. Furthermore, the interaction between dz2 of transition metals and S_3 p orbitals is critical for the binding strength of LiPSs. By understanding these interactions, the functionality of DACs can be customized for optimal performance in LSBs. For example, the MnCrBNC catalyst with 10 d-electrons exhibits the optimal d-band center and demonstrates exceptional LiPSs binding capability, the lowest Li2S decomposition energy barrier, and the lowest Gibbs free energy of reaction for the rate-determining step of sulfur reduction. This study elucidates the fundamental mechanisms for designing high-performance LSB catalysts through electronic structure modulation.
Collapse
Affiliation(s)
- Jianfeng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qiu He
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Wanjuan Zou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697, United States
| | - Mingwei Wu
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| | - Celso Ricardo Caldeira Rego
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Chenxi Xia
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Xiong
- College of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Chen X, Zhao MR, Song B, Li G, Yang LM. Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60231-60242. [PMID: 39440967 DOI: 10.1021/acsami.4c13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ammonia (NH3) is a vital chemical compound in industry and agriculture, and the electrochemical nitrogen reduction reaction (eNRR) is considered a promising approach for NH3 synthesis. However, the development of eNRR faces the challenge of high overpotential and low Faradaic efficiency. In this work, graphyne (GY) is anchored by 3d, 4d, and 5d dual transition metal atoms to form diatomic catalysts (DACs) and is roundly investigated as an electrocatalyst for eNRR via density functional theory calculations. Due to the protrusion of anchored metal atoms, the active sites of GY are better exposed compared to other substrates, exhibiting higher activity. Through four-step hierarchical high-throughput screening (ΔG*N2 < 0 eV, ΔG*N2 → *N2H < 0.4 eV, ΔG*NH2 → *NH3 < 0.4 eV, and ΔG*N2 < ΔG*H), the number of selected catalysts in each step is 325, 240, 145, and 20, respectively. Considering a series of factors, including stability, initial potential, and selectivity, 13 kinds of eligible catalysts are identified. Optimal eNRR paths studies show that the best catalyst Mn2@GY features no onset potential. For the three catalysts (Mn2@GY, Ir2@GY, and RhOs@GY), the onset potentials of the most favorable eNRR pathways are -0.07, -0.12, and -0.17 V, respectively. The excellent catalytic activity can be credited to the effective charge transfer and orbital interaction between the active site and adsorbed N2. Our work demonstrates the significance of DACs for ammonia synthesis and provides a paradigm for the study of DACs even for other important reactions.
Collapse
Affiliation(s)
- Xiaoting Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man-Rong Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingyi Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Ma L, Chen X, Huang Y, Zhang P, Xiao B. Density Functional Theory Investigation on the Nitrogen Reduction Mechanism in Two-Dimensional Transition-Metal Boride with Ordered Metal Vacancies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14355-14367. [PMID: 38961770 DOI: 10.1021/acs.langmuir.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The creation of ordered collective vacancies in experiment proves challenging within a two-dimensional lattice, resulting in a limited understanding of their impact on catalyst performance. Motivated by the successful experimental synthesis of monolayer molybdenum borides with precisely ordered metal vacancies [Zhou et al. Science 2021, 373, 801-805] through dealloying, the nitrogen reduction reaction (NRR) in monolayer borides was systematically investigated to elucidate the influence of such ordered metal vacancies on catalytic reactions and the underlying mechanisms. The results reveal that the N-containing intermediates tend to dissociate, facilitating the NRR process with reduced UL. The emergence of ordered metal vacancies modulates the electronic properties of the catalyst and partially facilitates the decomposition of N-containing intermediates. However, the UL for NRR in Mo4/3B2 and W4/3B2 exhibits a significant increase. The compromised electrochemical performance is explained through the development of a simple electronic descriptor of the d-p band center (ΔdM-pB). Among these materials, Mo4/3Sc2/3B2 exhibits the most superior catalytic activity with a UL of -0.5 V and favorable NRR selectivity over the HER. Our results provide mechanistic insights into the role of ordered metal vacancies in transition-metal boride for the NRR and highlight a novel avenue toward the rational design of superior NRR catalysts.
Collapse
Affiliation(s)
- Linghuan Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfei Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Peicong Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
6
|
Li X, Jiang L, Zhou Y, Yu Q. Electrochemical CO 2 Reduction on Cu-Based Monatomic Alloys: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39007735 DOI: 10.1021/acs.langmuir.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In recent years, single-atom alloy catalysts (SAAs) have received much attention due to the combination of structural features of both single-atom and alloy catalysts, as well as their efficient catalytic activity, high selectivity, and high stability in various chemical reactions. In this work, we designed a series of Cu-based SAAs by doping isolated 3d transition metal (TM1) atoms on the surface of Cu(111) (TM1 = Fe, Co, Ru, Rh, Os and Ir), in which Ir1/Cu(111) SAAs are considered to be the most stable among 3d-series SAAs due to their optimal binding energy (Eb). The density of states of SAAs have been systematically investigated to further discuss structural properties. Based on density functional theory calculations, the activity and selectivity of Ir1/Cu(111) SAAs are investigated for electrocatalytic CO2 reduction reaction (CO2RR). The initial hydrogenation of CO2 on Ir1/Cu(111) SAAs can form *CO intermediates, which will be further to CH4 production by the pathway of *CO → *CHO → *CHOH → *CH2OH → *CH2 → *CH3 → CH4. This study provides theoretical insights for the rational design of selective Cu-based monatomic alloy catalysts.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Liyun Jiang
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yilei Zhou
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qi Yu
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Sun H, Liu JY. A feasible strategy for designing cytochrome P450-mimic sandwich-like single-atom nanozymes toward electrochemical CO 2 conversion. J Colloid Interface Sci 2024; 661:482-492. [PMID: 38308888 DOI: 10.1016/j.jcis.2024.01.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Carbon dioxide electroreduction (CO2ER) presents a promising strategy for environmentally friendly CO2 utilization due to its low energy consumption. Single-atom nanozymes (SANs), amalgamating the benefits of single-atom catalysts and nanozymes, have become a hot topic in catalysis. Inspired by the intricate structure of cytochrome P450, we designed 81 sandwich-like SANs using Group-VIII transition metals (TMN4-S-TM'N4) and evaluated their performance in CO2ER using density functional theory (DFT). Our investigation revealed that most SANs display superior catalytic activity and improved specific product selectivity in comparison to the Cu (211) surface. Notably, IrN4-S-TMN4 (TM = Co, Rh, Pd) exhibited selective CO2 reduction to CO with remarkable limiting potentials (UL) of -0.11, -0.07, and -0.09 V, respectively, demonstrating potential as artificial CO dehydrogenases. Furthermore, RuN4-S-RuN4 exhibited formate dehydrogenase-like activity, resulting in selective production of HCOOH at a UL of -0.10 V. Machine learning analysis elucidated that the exceptional activity and selectivity of these SANs stemmed from precise modulation of electron density on sulfur atoms, achieved by varying transition metals in the subsurface. Our research not only identifies exceptional SANs for CO2ER but also provides insights into innovative methods for regulating non-bonding interactions and achieving sustainable CO2 conversion.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| |
Collapse
|
8
|
Sun Y, Shi W, Huang A, Sun M, Tu R, Li Z, Wang Z. Structural Design of π-d Conjugated TM x B 3 N 3 S 6 (x=2, 3) Monolayer Toward Electrocatalytic Ammonia Synthesis. CHEMSUSCHEM 2024; 17:e202301021. [PMID: 37701969 DOI: 10.1002/cssc.202301021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted wide attention to be acted as potential electrocatalysts for nitrogen reduction reaction (NRR). However, the coordination environment of the single transition metal (TM) atoms is essential to the catalytic activity for NRR. Herein, we proposed four types of 3-, 4-coordinated and π-d conjugated TMx B3 N3 S6 (x=2, 3, TM=Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Tc, Ru, Hf, Ta, W, Re and Os) monolayers for SACs. Based on density functional theory (DFT) calculations, I-TM2 B3 N3 S6 and III-TM3 B3 N3 S6 are the reasonable 3-coordinated and 4-coordinated structures screening by structure stable optimizations, respectively. Next, the structural configurations, electronic properties and catalytic performances of 30 kinds of the 3-coordinated I-TM2 B3 N3 S6 and 4-coordinated III-TM3 B3 N3 S6 monolayers with different single transition metal atoms were systematically investigated. The results reveal that B3 N3 S6 ligand is an ideal support for TM atoms due to existence of strong TM-S bonds. The 3-coordinated I-V2 B3 N3 S6 is the best SAC with the low limiting potential (UL ) of -0.01 V, excellent stability (Ef =-0.32 eV, Udiss =0.02 V) and remarkable selectivity characteristics. This work not only provides novel π-d conjugated SACs, but also gives theoretical insights into their catalytic activities and offers reference for experimental synthesis.
Collapse
Affiliation(s)
- Yongxiu Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wenwu Shi
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Renyong Tu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiguo Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
9
|
Lan P, Miao N, Gan Y, Peng L, Han S, Zhou J, Sun Z. High-Throughput Computational Design of 2D Ternary Chalcogenides for Sustainable Energy. J Phys Chem Lett 2023; 14:10489-10498. [PMID: 37967465 DOI: 10.1021/acs.jpclett.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Two-dimensional materials are considered to be promising for next-generation electronic and energy devices. However, the limited availability of 2D materials hinders their applications. Herein, we employed high-throughput computation to discover new 2D materials by cleaving the bulk and to investigate their electronic, thermoelectric, and optoelectronic properties. Using our database containing 810 structures of chalcogenides ABX3 (A or B = Al, Ga, In, Si, Ge, Sn, P, As, Sb, and Bi; X = S, Se, and Te), we identified 204 new 2D compounds promising for experimental preparation according to the exfoliation energy. Notably, 96 of them are more easily exfoliated than graphene, 52 compounds show higher Seebeck coefficients than Bi2Te3 at 300 K, and 20 compounds have power factors beyond 2 × 10-3 Wm-1 K-2 at 900 K. Also, 6 new compounds exhibit high theoretical photovoltaic efficiency exceeding 30%. Our findings expand the 2D materials family and provide new 2D compounds for sustainable thermoelectric and optoelectronic energy applications.
Collapse
Affiliation(s)
- Penghua Lan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yu Gan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Liyu Peng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Siyu Han
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Yao Y, Lv SY, Li G, Yang LM. Electrochemical ammonia synthesis under ambient conditions using TM-embedded porphine-fused sheets as single-atom catalysts. Phys Chem Chem Phys 2023; 25:27131-27141. [PMID: 37721478 DOI: 10.1039/d3cp03073c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this research, we systematically investigated the reaction mechanism and electrocatalytic properties of transition metal anchored two-dimensional (2D) porphine-fused sheets (TM-Por) as novel single-atom catalysts (SACs) for the electrochemical nitrogen reduction reaction (eNRR) under ambient conditions. Using high-throughput screening and first-principles calculations based on the density functional theory (DFT) method, three eNRR catalyst candidates, i.e. Mo-Por, Tc-Por, and Nb-Por, were screened out, with the eNRR onset potentials on them being -0.36, -0.53, and -0.74 V, respectively. Furthermore, these catalyst candidates all have good stability and selectivity. Analyzing the band structures found that these catalyst candidates all are metallic, which is needed for good electrocatalysts. Ab initio molecular dynamics (AIMD) simulations show that these catalyst candidates have good stability at 500 K. It is hoped that our work will open up new possibilities for the experimental synthesis of electrochemical ammonia catalysts.
Collapse
Affiliation(s)
- Ying Yao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Sheng-Yao Lv
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Ma R, Weng X, Lin L, Zhao J, Wei F, Lin S. Role of Peripheral Coordination Boron in Electrocatalytic Nitrogen Reduction over N-Doped Graphene-Supported Single-Atom Catalysts. Molecules 2023; 28:4597. [PMID: 37375152 DOI: 10.3390/molecules28124597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the effect of peripheral B doping on the electrocatalytic nitrogen reduction reaction (NRR) performance of N-doped graphene-supported single-metal atoms using density functional theory (DFT) calculations. Our results showed that the peripheral coordination of B atoms could improve the stability of the single-atom catalysts (SACs) and weaken the binding of nitrogen to the central atom. Interestingly, it was found that there was a linear correlation between the change in the magnetic moment (μ) of single-metal atoms and the change in the limiting potential (UL) of the optimum NRR pathway before and after B doping. It was also found that the introduction of the B atom suppressed the hydrogen evolution reaction, thereby enhancing the NRR selectivity of the SACs. This work provides useful insights into the design of efficient SACs for electrocatalytic NRR.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xintong Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Linghui Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jia Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
12
|
Deng D, Yang LM. Magnetic Moment Is an Effective Descriptor for Electrocatalytic Nitrogen Reduction Reaction on Two-Dimensional Organometallic Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22012-22024. [PMID: 37098155 DOI: 10.1021/acsami.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electrocatalytic reduction of nitrogen to ammonia (eNRR) under ambient condition is a potential sustainable and promising alternative to the traditional Haber-Bosch process. However, this electrochemical transformation is limited by the high overpotential, poor selectivity, low efficiency, and low yield. Herein, a new class of two-dimensional (2D) organometallic nanosheets c-TM-TCNE (c = cross motif, TM = 3d/4d/5d transition metals, TCNE = tetracyanoethylene) were comprehensively investigated as potential electrocatalysts for eNRR through high-throughput screening combined with spin-polarized density functional theory computations. After a multistep screening and follow-up systematic evaluation, c-Mo-TCNE and c-Nb-TCNE were selected as eligible catalysts, and c-Mo-TCNE showed the lowest limiting potential of -0.35 V via a distal pathway, displaying high catalytic performance. In addition, the desorption of NH3 from the surface of c-Mo-TCNE catalyst is also easy, with the free energy being 0.34 eV. Furthermore, the stability, metallicity, and eNRR selectivity are preeminent, making c-Mo-TCNE a promising catalyst. Unexpectedly, the magnetic moment of the transition metal shows a strong correlation with the catalytic activity (limiting potential), i.e., the larger the magnetic moment of the transition metal, the smaller the limiting potential of the electrocatalyst. The Mo atom has the largest magnetic moment and the c-Mo-TCNE catalyst features the smallest magnitude of limiting potential. Thus, the magnetic moment can be used as an effective descriptor for eNRR on c-TM-TCNE catalysts. The present study opens a way toward the rational design of highly efficient electrocatalysts for eNRR with novel two-dimensional functional materials. This work will promote further experimental efforts in this field.
Collapse
Affiliation(s)
- Dan Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Zhu H, Liu S, Yu J, Chen Q, Mao X, Wu T. Computational screening of effective g-C 3N 4 based single atom electrocatalysts for the selective conversion of CO 2. NANOSCALE 2023; 15:8416-8423. [PMID: 37093106 DOI: 10.1039/d3nr00286a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) material-based single-atom catalysts (SACs) have demonstrated their potential in electrochemical reduction reactions but exploring suitable 2D material-based SACs for the CO2 reduction reaction (CO2RR) by experiments is still a formidable task. In this study, theoretical screening of transition metal (TM)-doped graphitic carbon nitride (g-C3N4) materials as catalysts for the CO2RR was systematically performed based on density functional theory (DFT) calculations. An indicator for the selective formation of one carbon (C1) products was developed to screen catalysts that are active and selective in the CO2RR. The results indicated that Ti- and Ag-g-C3N4 demonstrate excellent catalytic activity and selectivity for the formation of CO and HCOOH, with limiting potentials of -0.330 and -0.096 V, respectively, while Cr-g-C3N4 exhibits the highest catalytic activity for yielding CH3OH and CH4 (-0.355 and -0.420 V, respectively), but none of the screened catalysts have been identified as ideal candidates for the selective production of CH3OH and CH4. Furthermore, Bader charge analysis suggested that excessive electron transfer from TM leads to stronger adsorption of intermediates and high limiting potentials, which subsequently result in lower catalytic activity. This work provides theoretical insights into the effective screening of active and selective 2D material-based SACs which has the potential to significantly reduce the time and resources required for the discovery of novel electrocatalysts for the controlled formation of various products.
Collapse
Affiliation(s)
- Huiwen Zhu
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shuai Liu
- School of Mechatronics and Energy Engineering, Ningbo Tech University, 315100, Ningbo, China
| | - Jiahui Yu
- Medical Science and Technology Innovation Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Quhan Chen
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Tao Wu
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
14
|
Fang X, Yang X, Wang H. The transition metal doped B cluster (TM4B18) as catalysis for nitrogen fixation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
15
|
Hou P, Huang Y, Ma F, Zhu G, Du R, Wei X, Zhang J, Wang M. Screening of single-atom catalysts of transition metal supported on MoSe2 for high-efficiency nitrogen reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Zhang M, Zhang K, Ai X, Liang X, Zhang Q, Chen H, Zou X. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Gao D, Yi D, Sun C, Yang Y, Wang X. Breaking the Volcano-Shaped Relationship for Highly Efficient Electrocatalytic Nitrogen Reduction: A Computational Guideline. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52806-52814. [PMID: 36380594 DOI: 10.1021/acsami.2c14134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volcano-shaped relationship is very common in electrocatalytic nitrogen reduction reaction (e-NRR) and is usually caused by the competition between the first and last hydrogenation steps. How to break such a relationship to further improve the catalytic performance remains a great challenge. Herein, using first-principles calculations, we investigate a range of transition-metal (TM)-doped Cu-based single-atom alloys (TM1-Cu(111)) as catalysts for e-NRR. When the adsorption of N2 on the catalysts is strong enough, the inert N2 molecules can be effectively activated for the first hydrogenation step. Meanwhile, the last hydrogenation step is not affected by the scaling relationship and remains easy on all of the catalysts due to the unstable top-site adsorption of NH2, resulting in the break of the volcano-shaped relationship in e-NRR. Thus, only the first hydrogenation step is identified as the potential determining step. Four TM1-Cu(111) catalysts (TM = Re, W, Tc, and Mo) are selected as promising catalysts with limiting potential ranging from -0.38 to -0.56 V, showing outstanding e-NRR activity. Besides, the four catalysts also inhibit the competing hydrogen evolution reaction and long-term stability. Our work provides a guideline for breaking the volcano-shaped relationship in e-NRR and significant in the rational design of highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Denglei Gao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300354, P. R. China
| | - Ding Yi
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| | - Chao Sun
- Institute of Molecular Plus, Tianjin University, Tianjin300072, P. R. China
| | - Yongan Yang
- Institute of Molecular Plus, Tianjin University, Tianjin300072, P. R. China
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| |
Collapse
|
18
|
Lv SY, Li G, Yang LM. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. J Colloid Interface Sci 2022; 621:24-32. [DOI: 10.1016/j.jcis.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
19
|
Fang L, Gou G, Shang J, Liu M, Gu Q, Li L. Regulating the spin state of single-atom doped covalent triazine frameworks for efficient nitrogen fixation. J Colloid Interface Sci 2022; 627:931-941. [PMID: 35901572 DOI: 10.1016/j.jcis.2022.07.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Covalent triazine frameworks (CTFs), served as a versatile platform, can form expedient metal-N single-atom coordination sites as promising catalytic centers. To seek out excellent candidate catalysts of M/CTFs (M = Transition metal) for nitrogen reduction reaction (NRR), a "five-step" strategy involving spin states has been established for hierarchical high-throughput screening and reveals strong coordination ability of the CTFs, outstanding conductivity of the M/CTFs, effective adsorption and activation of N2* attributed to the electron transfer and orbital hybridization between the M/CTFs and N2*. Among the potential candidates, the Cr/CTF is screened out to be an excellent one for nitrogen fixation, which can not only inhibit hydrogen evolution reaction (HER) greatly but also has good thermodynamic stability (Eb = -4.40 eV), narrow band gap (Eg = 0.03 eV), moderate adsorption energy (Ea = -0.84 eV), large activation energy (ΔGN2* = -0.71 eV) and a theoretical Faradaic efficiency of 100%. The spin state has been confirmed to be an important descriptor of catalytic activity and the two-state reactivity (TSR) is validated to exist in the NRR. Reaction mechanism with different spin states of Cr/CTF has been demonstrated to give a great impact on the nitrogen fixation, providing solid theoretical support for the design of more efficient NRR catalysts.
Collapse
Affiliation(s)
- Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qinfen Gu
- Australian Synchrotron (ANSTO), Clayton, Victoria 3168, Australia
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
20
|
Hu X, Xiong L, Fang WH, Su NQ. Computational Insight into Metallated Graphynes as Single Atom Electrocatalysts for Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27861-27872. [PMID: 35678821 DOI: 10.1021/acsami.2c05087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) is expected to achieve sustainable ammonia synthesis via direct nitrogen fixation; however, the high-quality catalysts that play a crucial role in the NRR are still lacking. The emerging transition metal-1,3,5-triethynylbenzene (TM-TEB) frameworks offer attractive possibilities in the electrochemical catalysis due to the featured atomic and electronic structures. This work presents a comprehensive first-principles study of the TM-TEB systems for TMs from the first three d-block series and systematically explores their potential applications as NRR electrocatalysts. By designing a hierarchical screening strategy, the TM-TEB systems are evaluated based on the NRR catalytic activity as well as the competition from the hydrogen evolution reaction. In addition, in order to have a deeper understanding of the catalytic activities of the TM-TEB systems, diverse possible NRR paths on the TM-TEB surfaces are completely analyzed as well. Our analysis reveals that the TM-TEB systems with TM = V, Mo, Tc, W, and Os are electrocatalysts with a high NRR catalytic activity, while among them, only Mo- and V-TEB show promising NRR selectively. This work demonstrates the great potential of the TM-TEB systems as electrocatalysts in the NRR process, which improves the understanding of the TM-TEB systems and can motivate further exploration of their application in catalysis.
Collapse
Affiliation(s)
- Xiuli Hu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Lixin Xiong
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Wei-Hai Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Neil Qiang Su
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Tang J, Zeng Z, Liang H, Wang Z, Nong W, Yang Z, Qi C, Qiao Z, Li Y, Wang C. Simultaneously Enhancing Catalytic Performance and Increasing Density of Bifunctional CuN 3 Active Sites in Dopant-Free 2D C 3N 3Cu for Oxygen Reduction/Evolution Reactions. ACS OMEGA 2022; 7:19794-19803. [PMID: 35722000 PMCID: PMC9202037 DOI: 10.1021/acsomega.2c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Atomically dispersed M-N-C has been considered an effective catalyst for various electrochemical reactions such as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which faces the challenge of increasing metal load while simultaneously maintaining catalytic performance. Herein, we put forward a strategy for boosting catalytic performances of a single Cu atom coordinated with three N atoms (CuN3) for both ORR and OER by increasing the density of connected CuN3 moieties. Our calculations first show that a single CuN3 moiety exhibiting no catalytic performance for ORR and OER can be activated by increasing the density of metal centers, which weakens the binding affinity to *OH due to the lowered d-band center of the metal atoms. These findings stimulate the further theoretical design of a two-dimensional compound of C3N3Cu with a high concentration of homogeneously distributed CuN3 moieties serving as bifunctional active sites, which demonstrates efficient catalytic performance for both ORR and OER as reflected by the overpotentials of 0.71 and 0.43 V, respectively. This work opens a new avenue for designing effective single-atom catalysts with potential applications as energy storage and conversion devices possessing high density of metal centers independent of the doping strategy and defect engineering, which deserves experimental investigation in the future.
Collapse
Affiliation(s)
- Jinzhi Tang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Zhihao Zeng
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Haikuan Liang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Zhihao Wang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Wei Nong
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Zhen Yang
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process,
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, People’s Republic
of China
| | - Chenze Qi
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process,
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, People’s Republic
of China
| | - Zhengping Qiao
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Yan Li
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| | - Chengxin Wang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Materials Science and Engineering, Sun
Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
22
|
Lv SY, Li G, Yang LM. Transition Metals Embedded Two-Dimensional Square Tetrafluorotetracyanoquinodimethane Monolayers as a Class of Novel Electrocatalysts for Nitrogen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25317-25325. [PMID: 35608362 DOI: 10.1021/acsami.2c02677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination of transition metal (TM) atoms and high electron affinity organic framework tetrafluorotetracyanoquinodimethanes (F4TCNQs) makes the TM-embedded two-dimensional (2D) square F4TCNQ monolayers (TM-sF4TCNQ) possible to have excellent characteristics of single-atom catalysts and 2D materials. For the first time, the TM-sF4TCNQ monolayers have been considered for application in the electrocatalytic nitrogen reduction reaction (eNRR) field. Through high-throughput screening, the catalytic performance of 30 TM-sF4TCNQ (TM = 3d∼5d TMs) monolayers for eNRR was comprehensively evaluated. The Mo-, Nb-, and Tc-sF4TCNQ catalysts stand out with the onset potentials of -0.18, -0.44, and -0.54 V, respectively, through the optimal reaction paths. Our work will provide guidance for the green and sustainable development of electrocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Sheng-Yao Lv
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
He X, Yin F, Yi X, Yang T, Chen B, Wu X, Guo S, Li G, Li Z. Defective UiO-66-NH 2 Functionalized with Stable Superoxide Radicals toward Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26571-26586. [PMID: 35666991 DOI: 10.1021/acsami.1c23643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) to NH3 is limited by low Faradaic efficiency (FE). Herein, defective UiO-66-NH2 functionalized with quite stable superoxide radicals (O2•) is developed as a highly active NRR catalyst. The experimental and computational results show that one linker per Zr6 node is missed and two Zr atoms are exposed in the defective UiO-66-NH2. One of the two exposed Zr atoms can stably adsorb O2•, and thus, a Zr-OO• site forms during the preparations without light excitation or postoxidation, while the other Zr atom is activated as an active site. The synergistic effects of the two Zr sites in the defective UiO-66-NH2 suppress hydrogen and hydrazine evolutions considerably. They are as follows: (i) due to repulsion of the proton on the active Zr site and stabilization of the proton on the Zr-OO• site, the active Zr site is unfavorable for the adsorption of the proton with a high energy barrier, which is the HER rate-determining step (RDS); (ii) under the assistance of the OO• of the Zr-OO• site, the first hydrogenation step of *N2 (i.e., NRR RDS) on the active Zr site is promoted; and (iii) relying on the assistance of the OO• of the Zr-OO• site, the continuous hydrogenation of *NH2NH2 to produce NH3 on the active Zr site is spontaneously exothermic, whereas its desorption to hydrazine is blocked. Accordingly, an extremely high FE of ∼85.21% has been realized along with a high yield rate of NH3 (∼52.81 μg h-1 mgcat-1). To the best of our knowledge, it is the highest FE that has been achieved in recent years. Radical scavenging treatment of the defective UiO-66-NH2 and detailed investigations of two categories of control samples further verify the favorable effects of the O2• that closely correlates with the missed linkers on the performance of the NRR to NH3. This work opens a new way toward highly efficient NRR catalysts, i.e., stable radical-activating defective metal-organic frameworks.
Collapse
Affiliation(s)
- Xiaobo He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xuerui Yi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Biaohua Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiang Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guoru Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhichun Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
24
|
He C, Shi P, Pang D, Zhang Z, Lin L. Design of S-vacancy FeS2 as an electrocatalyst for NO reduction reaction: A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wang S, Xin Y, Yuan J, Wang L, Zhang W. Direct conversion of methane to methanol on boron nitride-supported copper single atoms. NANOSCALE 2022; 14:5447-5453. [PMID: 35322827 DOI: 10.1039/d1nr08466f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct conversion of methane to methanol (DMTM) under mild conditions is one of the most attractive and challenging processes in catalysis. By using density functional theory calculations, we systematically investigate the catalytic performance of Cu single atoms supported on O-doped BN in different coordination environments as a DMTM catalyst. Computations demonstrate that Cu coordinated with one O atom and two N atoms on O-doped BN (Cu1/O1N2-BN) exhibited the highest catalytic activity for DMTM at room temperature with quite a low rate-determining step energy barrier of 0.46 eV. The moderate adsorption of *O atoms, selective stabilization of CH3 species, and easy desorption of CH3OH are responsible for the unique activity of Cu1/O1N2-BN for DMTM. In addition, the adsorption free energy of *O atoms produced by the dissociation of O-donor molecules is a suitable descriptor for predicting the catalytic performance of materials and accelerating the discovery of catalysts for DMTM. This work opens new avenues to develop highly efficient catalysts for DMTM.
Collapse
Affiliation(s)
- Sanmei Wang
- State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yue Xin
- State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jinyun Yuan
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, China.
| | - Liangbing Wang
- State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
26
|
Wang J, Zhang Z, Li Y, Qu Y, Li Y, Li W, Zhao M. Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1024-1033. [PMID: 34963279 DOI: 10.1021/acsami.1c20373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) covalent-organic frameworks (COFs) offer abundant hollow sites for stably anchoring transition-metal (TM) atoms to promote single-atom catalysis (SACs), which is expected to overcome the poor stability of SACs on conventional substrate materials. Using first-principles calculations within density-functional theory, a number of TM atoms embedded on a 2D COF Pc-TFPN (TMPc-TFPN) as SACs for ammonia synthesis under ambient conditions are investigated. Through a "five-step" screening strategy, WPc-TFPN is highlighted from 26 TMPc-TFPNs as the best SACs for nitrogen reduction reaction (NRR) with a low limiting potential of -0.19 V. Meanwhile, multiple-level descriptors are developed to uncover the origins of NRR activity, among which a simple descriptor φ that involves the electronegativity and number of d electrons of TM atoms shows volcano plot trends of limiting potential of NRR. This work provides a rational strategy for fast screening SACs for the electrochemical N2 fixation using 2D COFs containing TM-N4 units as host materials, which could also be applied to other electrochemical reactions.
Collapse
Affiliation(s)
- Juan Wang
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Zhihua Zhang
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Yangyang Li
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Yuanyuan Qu
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Yongqiang Li
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Weifeng Li
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
27
|
Zhao W, Shi J, Lin M, Sun L, Su H, Sun X, Murayama T, Qi C. Praseodymia–titania mixed oxide supported gold as efficient water gas shift catalyst: modulated by the mixing ratio of oxides. RSC Adv 2022; 12:5374-5385. [PMID: 35425532 PMCID: PMC8981221 DOI: 10.1039/d1ra08572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Modulating the active sites for controllable tuning of the catalytic activity has been the goal of much research, however, this remains challenging. The O vacancy is well known as an active site in reducible oxides. To modify the activity of O vacancies in praseodymia, we synthesized a series of praseodymia–titania mixed oxides. Varying the Pr : Ti mole ratio (2 : 1, 1 : 2, 1 : 1, 1 : 4) allows us to control the electronic interactions between Au, Pr and Ti cations and the local chemical environment of the O vacancies. These effects have been studied study by X-ray photoelectron spectroscopy (XPS), CO diffuse reflectance Fourier transform infrared spectroscopy (CO-DRIFTS) and temperature-programmed reduction (CO-TPR, H2-TPR). The water gas shift reaction (WGSR) was used as a benchmark reaction to test the catalytic performance of different praseodymia–titania supported Au. Among them, Au/Pr1Ti2Ox was identified to exhibit the highest activity, with a CO conversion of 75% at 300 °C, which is about 3.7 times that of Au/TiO2 and Au/PrOx. The Au/Pr1Ti2Ox also exhibited excellent stability, with the conversion after 40 h time-on-stream at 300 °C still being 67%. An optimal ratio of Pr content (Pr : Ti 1 : 2) is necessary for improving the surface oxygen mobility and oxygen exchange capability, a higher Pr content leads to more O vacancies, however with lower activity. This study presents a new route for modulating the active defect sites in mixed oxides which could also be extended to other heterogeneous catalysis systems. Schematic illustration of H2O activation on the Pr-TiOx support and the following reaction with CO in the Au–oxide interface.![]()
Collapse
Affiliation(s)
- Weixuan Zhao
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Shi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Mingyue Lin
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Libo Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Toru Murayama
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
- Research Center for Hydrogen Energy-based Society, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Caixia Qi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
28
|
Naeem R, Afzal S, Mansoor MA, Munawar K, Sherino B, Ahmed R. A composite approach to synthesize a high-performance Pt/WO 3–carbon catalyst for optical and electrocatalytic applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical and electrocatalytic activity of the synthesized Pt/WO3–C nanocomposite in acidic and alkaline media.
Collapse
Affiliation(s)
- Rabia Naeem
- Department of Chemistry, Government College University, Lahore, Pakistan
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saba Afzal
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, Pakistan
| | - Khadija Munawar
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Bibi Sherino
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Riaz Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
| |
Collapse
|