1
|
Lee H. Molecular Dynamics Simulations of Protein Corona Formation on Membrane Surfaces: Effects of Lipid Composition and PEGylation on Selective Plasma Protein Adsorption. Mol Pharm 2025; 22:2590-2602. [PMID: 40191893 DOI: 10.1021/acs.molpharmaceut.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2025]
Abstract
The adsorption of plasma proteins (human serum albumin (SA) and apolipoproteins A-I and E-III) onto various lipid bilayers is simulated. With three different binding orientations for each protein, free energy calculations from umbrella sampling simulations show stronger binding of SA to the bilayer composed of lipids with smaller headgroups and stronger binding of apolipoproteins to the bilayer composed of anionic lipids rather than cationic or zwitterionic lipids, in agreement with experiments. Anionic residues of SA form hydrogen bonds more readily with amine headgroups of lipids than with larger trimethylammonium headgroups, where the cationic nitrogen is sterically hindered. In contrast, cationic residues of apolipoproteins form hydrogen bonds predominantly with anionic phosphate groups of lipids, indicating that protein-bilayer binding is attributed to hydrogen bonds facilitated by electrostatic attraction, depending on the electrostatics and size of lipid headgroups. For lipid bilayers grafted with polyethylene glycol (PEG), the binding strength of SA decreases while that of apolipoproteins increases, consistent with experiments, due to hydrogen bonding and hydrophobic interactions between proteins and PEG. These findings help explain experimental observations regarding the abundance of specific plasma proteins adsorbed onto various liposomes and suggest manipulating lipid composition and PEGylation to attract specific proteins to liposome-based drug carriers.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea
| |
Collapse
|
2
|
Tang L, Sun M, Chen J, Dai Q, Xue S, Liu C, Zhang M. Peptide-functionalized nanocapsules for targeted inhibition of β2-microglobulin amyloid aggregation. J Mater Chem B 2025; 13:3319-3324. [PMID: 39928035 DOI: 10.1039/d4tb01347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Dialysis-related amyloidosis (DRA) is a severe complication in patients undergoing long-term dialysis, primarily driven by the deposition of β2-microglobulin (β2m) amyloid fibrils. The effective sequestration and removal of β2m from the bloodstream represent key therapeutic strategies for managing DRA. In this study, we developed a β2m-binding peptide (KDWSFYILAHTEF, denoted as CF)-functionalized nanocomposite (NC-CF), consisting of a protein nanocapsule surface modified with CF peptides to enable specific β2m binding. NC-CF effectively modulates β2m aggregation, transforming slender fibrils into larger clumps while providing steric hindrance to prevent further aggregation. With a high adsorption capacity, 1 μg of NC-CF can adsorb approximately 1 μg of β2m during dialysis, highlighting its potential as an efficient adsorbent for in vitro β2m removal. Furthermore, NC-CF exhibits excellent biocompatibility and significantly mitigates β2m aggregate-induced cytotoxicity, achieving a cell protection rate exceeding 70%. These findings suggest that NC-CF holds great promise as a cytoprotective agent and a nanoinhibitor of β2m aggregation in vivo. Overall, NC-CF offers a novel and effective approach for alleviating DRA by simultaneously removing β2m and safeguarding cells against amyloid-induced toxicity.
Collapse
Affiliation(s)
- Lin Tang
- Department of Medical Imaging, Qilu Medical University, 255100, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Miao Sun
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Junnan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Song Xue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206, P. R. China.
| |
Collapse
|
3
|
Tang H. Unveiling the inhibition mechanism of host-defense peptide cathelicidin LL-37 on the amyloid aggregation of the human islet amyloid polypeptide. NANOSCALE 2025; 17:5116-5127. [PMID: 39871583 DOI: 10.1039/d4nr05075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear. In this paper, we explored the molecular interactions between hIAPP and LL37 using all-atom discrete molecular dynamics (DMD), a novel and predictive molecular dynamics engine with improved sampling efficiencies. We found that the LL37 peptides can effectively interact with hIAPP in monomer, oligomer, and fibril states driven by hydrophobic associations and pi-pi interactions. Specifically, the hydrophobic residues in the N- and C-termini of LL37 peptides can firmly bind with the monomeric and oligomeric hIAPP, especially in the amyloidogenic regions, to prevent the self-interactions of amyloidogenic regions and thus hinder the formation of amyloid fibrils. Furthermore, LL37 can bind to the elongation surfaces of the hIAPP fibril seeds with geometric incompatibility for monomer addition to block the fibril growth. Together, we identified the crucial residues and key driving forces for the interactions between LL37 and hIAPP peptides and revealed the related dynamics and conformational changes. The uncovered mechanism can contribute to a better understanding of the pathological links between microbial infections and amyloid diseases and guide the designs of novel therapies combining antimicrobial and anti-amyloid functions.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Engineering Mechanics, Hohai University, Nanjing 211100, P.R. China.
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
4
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
5
|
Lee H. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403913. [PMID: 39082088 PMCID: PMC11657031 DOI: 10.1002/smll.202403913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Indexed: 12/20/2024]
Abstract
Multiple 10 nm-sized anionic nanoparticles complexed with plasma proteins (human serum albumin (SA) or immunoglobulin gamma-1 (IgG)) at different ratios are simulated using all-atom and coarse-grained models. Coarse-grained simulations show much larger hydrodynamic radii of individual particles at a low protein concentration (a protein-to-particle ratio of 1) than at high protein concentrations or without proteins, indicating particle aggregation only at such a low protein concentration, in agreement with experiments. This particle aggregation is attributed to both electrostatic and hydrophobic particle-protein interactions, to an extent dependent on different proteins. In all-atom simulations, IgG proteins induce particle aggregation with and without salt, while SA proteins promote particle aggregation only in the presence of salt that can weaken the electrostatic repulsion between anionic particles closely linked via SA that is smaller than IgG, which also agree well with experiments. Besides charge interactions, hydrophobic interactions between particles and proteins are also important especially at the high salt concentration, leading to the increased particle-protein contact area. These findings help explain experimental observations regarding that the effects of protein concentration and ionic strength on particle aggregation depend on different plasma proteins, which are interpreted by binding free energies, electrostatic, and hydrophobic interactions between particles and proteins.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical EngineeringDankook UniversityYongin‐si16890South Korea
| |
Collapse
|
6
|
Lee H. Recent Advances in Simulation Studies on the Protein Corona. Pharmaceutics 2024; 16:1419. [PMID: 39598542 PMCID: PMC11597855 DOI: 10.3390/pharmaceutics16111419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
When flowing through the blood stream, drug carriers such as nanoparticles encounter hundreds of plasma proteins, forming a protein layer on the nanoparticle surface, known as the "protein corona". Since the protein corona influences the size, shape, and surface properties of nanoparticles, it can modulate their circulating lifetime, cytotoxicity, and targeting efficiency. Therefore, understanding the mechanism of protein corona formation at the atomic scale is crucial, which has become possible due to advances in computer power and simulation methodologies. This review covers the following topics: (1) the structure, dynamics, and composition of protein corona on nanoparticles; (2) the effects of protein concentration and ionic strength on protein corona formation; (3) the effects of particle size, morphology, and surface properties on corona formation; (4) the interactions among lipids, membranes, and nanoparticles with the protein corona. For each topic, mesoscale, coarse-grained, and all-atom molecular dynamics simulations since 2020 are discussed. These simulations not only successfully reproduce experimental observations but also provide physical insights into the protein corona formation. In particular, these simulation findings can be applied to manipulate the formation of a protein corona that can target specific cells, aiding in the rational design of nanomedicines for drug delivery applications.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Republic of Korea
| |
Collapse
|
7
|
Ageeli AA, Osrah B, Alosaimi AM, Alwafi R, Alghamdi SA, Saeed A. Investigating the influence of molybdenum disulfide quantum dots coated with DSPE-PEG-TPP on molecular structures of liver lipids and proteins: An in vivo study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124675. [PMID: 38906057 DOI: 10.1016/j.saa.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Molybdenum disulfide (MoS2) quantum dots (QDs) based therapeutic approaches hold great promise for biomedical applications, necessitating a thorough evaluation of their potential effects on biological systems. In this study, we systematically investigated the impact of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)-2000](DPSE-PEG) linked with (3-carboxypropyl)triphenyl-phosphonium-bromide (TPP) on molecular structures of hepatic tissue lipids and proteins through a multifaceted analysis. The DSPE-PEG-TPP-MoS2 QDs were prepared and administered to the mice daily for 7 weeks. Liver tissues were subjected to a comprehensive examination using various techniques, including Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and liver function tests. FTIR revealed subtle changes in the lipid composition of liver tissues, indicating potential modifications in the cell membrane structure. Also, the (CH stretching and amides I and II regions) analysis unveiled tiny alterations in lipid chain length and fluidity without changes in the protein structures, suggesting a minor influence of DSPE-PEG-TPP-MoS2 QDs on the liver's cellular membrane and no effect on the protein structures. Further scrutiny using UV-vis spectroscopy demonstrated that DSPE-PEG-TPP-MoS2 QDs had no discernible impact on the absorbance intensities of aromatic amino acids and the Soret band. This observation implies that the treatment with SPE-PEG-TPP-MoS2 QDs did not induce significant alterations in helical conformation or the microenvironment surrounding prosthetic groups in liver tissues. The liver function tests, including ALP, ALT, AST, and BIL levels, revealed no statistically significant changes in these key biomarkers despite minor fluctuations in their values, indicating a lack of significant liver dysfunction. This study provides a detailed understanding of the effects of DSPE-PEG-TPP-MoS2 QDs on hepatic lipids and proteins, offering valuable insights into the biocompatibility and limited impact on the molecular and functional aspects of the liver tissue. These findings could be essential for the application of MoS2 QDs-based therapies.
Collapse
Affiliation(s)
- Abeer Ali Ageeli
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Bahiya Osrah
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Reem Alwafi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - S A Alghamdi
- Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Physics, Thamar University, Thamar 87246, Yemen.
| |
Collapse
|
8
|
Tang H, Sun Y, Wang L, Ke PC, Ding F. Uncovering Intermolecular Interactions Driving the Liquid-Liquid Phase Separation of the TDP-43 Low-Complexity Domain via Atomistic Dimerization Simulations. J Chem Inf Model 2024; 64:7590-7601. [PMID: 39342654 PMCID: PMC11590498 DOI: 10.1021/acs.jcim.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Liquid-liquid phase separation (LLPS) of transactive response DNA-binding protein of 43 kDa (TDP-43), which exerts multiple functions in the splicing, trafficking, and stabilization of RNA, mediates the formation of membraneless condensates with crucial physiological roles, while its aberrant LLPS is linked to multiple neurodegenerative diseases. However, due to the heterogeneous and dynamic nature of LLPS, major gaps remain in understanding the precise intermolecular interactions driving LLPS and how specific mutations alter LLPS dynamics. Here, we investigated the molecular mechanisms underlying the LLPS of the TDP-43 low-complexity domain (LCD) by simulating the dimerization process using all-atom discrete molecular dynamics with microsecond-long simulations. Our results showed that the TDP-43 LCD was intrinsically disordered, with helical structures consistent with prior nuclear magnetic resonance studies. Phase separation propensity was assessed by simulating the dimerization of the TDP-43 LCD and four mutants, showing that A321G, W334G, and M337V inhibited self-association, while G335D promoted it, fully consistent with experimental reports. During the dimerization process, two peptides experienced both elastic and nonelastic collisions, and the self-associated dimer featured both high- and low-contact states. These results suggested that the dimerization process of the TDP-43 LCD was accordingly dynamic and heterogeneous. Additionally, we identified crucial regions containing hydrophobic clusters and aromatic residues in the N-terminus, central region, and C-terminus that were essential for the self-association of the TDP-43 LCD. These residues with high binding affinities can act as stickers to form peptide networks in LLPS. Together, our simulation provides a comprehensive picture of the intermolecular interactions driving the phase separation of the TDP-43 LCD, offering insights into both physiological functions and pathological mechanisms.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Engineering Mechanics, Hohai University, Nanjing, 210098, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Lei Wang
- Department of Engineering Mechanics, Hohai University, Nanjing, 210098, China
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Centre, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
9
|
Tian H, Zhu H, Xue Y, Wang M, Xing K, Li Z, Loh XJ, Ye E, Ding X, Li BL, Yin X, Leong DT. White light powered antimicrobial nanoagents for triple photothermal, chemodynamic and photodynamic based sterilization. NANOSCALE HORIZONS 2024; 9:1190-1199. [PMID: 38757185 DOI: 10.1039/d4nh00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
10
|
Chand A, Le N, Kim K. CdSe/ZnS Quantum Dots' Impact on In Vitro Actin Dynamics. Int J Mol Sci 2024; 25:4179. [PMID: 38673765 PMCID: PMC11050122 DOI: 10.3390/ijms25084179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.
Collapse
Affiliation(s)
| | | | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (A.C.); (N.L.)
| |
Collapse
|
11
|
Sinha T, Bokhari SFH, Khan MU, Sarim Shaheer M, Amir M, Zia BF, Bakht D, Javed MA, Almadhoun MKIK, Burhanuddin M, Puli ST. Gazing Beyond the Horizon: A Systematic Review Unveiling the Theranostic Potential of Quantum Dots in Alzheimer's Disease. Cureus 2024; 16:e58677. [PMID: 38770476 PMCID: PMC11103116 DOI: 10.7759/cureus.58677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline, poses a significant healthcare challenge worldwide. The accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein drives neuronal degeneration and neuroinflammation, perpetuating disease progression. Despite advancements in understanding the cellular and molecular mechanisms, treatment hurdles persist, emphasizing the need for innovative intervention strategies. Quantum dots (QDs) emerge as promising nanotechnological tools with unique photo-physical properties, offering advantages over conventional imaging modalities. This systematic review endeavors to elucidate the theranostic potential of QDs in AD by synthesizing preclinical and clinical evidence. A comprehensive search across electronic databases yielded 20 eligible studies investigating the diagnostic, therapeutic, or combined theranostic applications of various QDs in AD. The findings unveil the diverse roles of QDs, including inhibiting Aβ and tau aggregation, modulating amyloidogenesis pathways, restoring membrane fluidity, and enabling simultaneous detection of AD biomarkers. The review highlights the potential of QDs in targeting multiple pathological hallmarks, delivering therapeutic payloads across the blood-brain barrier, and facilitating real-time imaging and high-throughput screening. While promising, challenges such as biocompatibility, surface modifications, and clinical translation warrant further investigation. This systematic review provides a comprehensive synthesis of the theranostic potential of QDs in AD, paving the way for translational research and clinical implementation.
Collapse
Affiliation(s)
- Tanya Sinha
- Medical Education, Tribhuvan University, Kathmandu, NPL
| | | | | | - Muhammad Sarim Shaheer
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
- Biochemistry, ABWA Medical College, Faisalabad, PAK
| | - Maaz Amir
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Beenish Fatima Zia
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Danyal Bakht
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | | | - Sai Teja Puli
- Internal Medicine, Bhaskar Medical College, Hyderabad, IND
| |
Collapse
|
12
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
13
|
Chandrasekhar G, Srinivasan E, Nandhini S, Pravallika G, Sanjay G, Rajasekaran R. Computer aided therapeutic tripeptide design, in alleviating the pathogenic proclivities of nocuous α-synuclein fibrils. J Biomol Struct Dyn 2024; 42:483-494. [PMID: 36961221 DOI: 10.1080/07391102.2023.2194003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disorder (PD) exacerbates neuronal degeneration of motor nerves, thereby effectuating uncoordinated movements and tremors. Aberrant alpha-synuclein (α-syn) is culpable of triggering PD, wherein cytotoxic amyloid aggregates of α-syn get deposited in motor neurons to instigate neuro-degeneration. Amyloid aggregates, typically rich in beta sheets are cardinal targets to mitigate their neurotoxic effects. In this analysis, owing to their interaction specificity, we formulated an efficacious tripeptide out of the aggregation-prone region of α-syn protein. With the help of a proficient computational pipeline, systematic peptide shortening and an adept molecular simulation platform, we formulated a tripeptide, VAV from α-syn structure based hexapeptide KISVRV. Indeed, the VAV tripeptide was able to effectively mitigate the α-syn amyloid fibrils' dynamic rate of beta-sheet formation. Additional trajectory analyses of the VAV- α-syn complex indicated that, upon its dynamic interaction, VAV efficiently altered the distinct pathogenic structural dynamics of α-syn, further advocating its potential in alleviating aberrant α-syn's amyloidogenic proclivities. Consistent findings from various computational analyses have led us to surmise that VAV could potentially re-alter the pathogenic conformational orientation of α-syn, essential to mitigate its cytotoxicity. Hence, VAV tripeptide could be an efficacious therapeutic candidate to efficiently ameliorate aberrant α-syn amyloid mediated neurotoxicity, eventually attenuating the nocuous effects of PD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu, India
| | - E Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - S Nandhini
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu, India
| | - G Pravallika
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu, India
| | - G Sanjay
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Alamri OA, Qusti S, Balgoon M, Ageeli AA, Al-Marhaby FA, Alosaimi AM, Jowhari MA, Saeed A. The role of MoS 2 QDs coated with DSPE-PEG-TPP in the protection of protein secondary structure of the brain tissues in an Alzheimer's disease model. Int J Biol Macromol 2024; 255:128522. [PMID: 38040141 DOI: 10.1016/j.ijbiomac.2023.128522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in β-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.
Collapse
Affiliation(s)
- Ohoud Abdulaziz Alamri
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia; Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer A Ageeli
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - F A Al-Marhaby
- Department of Physics, Al-Qunfudhah University College, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A Jowhari
- Medical Physics Department, Jazan Specialized Hospital, Ministry of Health, Jazan Health Affairs, Jazan 45142, Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Physics, Thamar University, Thamar 87246, Yemen.
| |
Collapse
|
15
|
Song X, Ding Q, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206959. [PMID: 37322406 DOI: 10.1002/smll.202206959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive accumulations of reactive oxygen species (ROS) and amyloid-β (Aβ) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aβ fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aβ fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aβ binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aβ plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aβ deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
16
|
Alomari OA, Qusti S, Balgoon M, Aljoud F, Alamry KA, Hussein MA. Modified TPP-MoS 2 QD Blend as a Bio-Functional Model for Normalizing Microglial Dysfunction in Alzheimer's Disease. Neurol Int 2023; 15:954-966. [PMID: 37606394 PMCID: PMC10443245 DOI: 10.3390/neurolint15030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aβ were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), transforming growth factor beta (TGF-β), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aβ. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aβ. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 μg/mL prior to Aβ stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-β and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aβ. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization.
Collapse
Affiliation(s)
- Ohoud A. Alomari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
17
|
Botchway BOA, Liu X, Zhou Y, Fang M. Biometals in Alzheimer disease: emerging therapeutic and diagnostic potential of molybdenum and iodine. J Transl Med 2023; 21:351. [PMID: 37244993 PMCID: PMC10224607 DOI: 10.1186/s12967-023-04220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.
Collapse
Affiliation(s)
- Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
- Pharmacy Department, Bupa Cromwell Hospital, Kensington, London, SW5 0TU UK
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
| |
Collapse
|
18
|
Hou T, Shao X, Ding M, Mei K, Wang X, Guan P, Hu X. Photooxidative inhibition and decomposition of β-amyloid in Alzheimer's by nano-assemblies of transferrin and indocyanine green. Int J Biol Macromol 2023; 241:124432. [PMID: 37086772 DOI: 10.1016/j.ijbiomac.2023.124432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Photoinduced modulation of Aβ42 aggregation has emerged as a therapeutic option for treating Alzheimer's disease (AD) due to its high spatiotemporal controllability, noninvasive nature, and low systemic toxicity. However, existing photo-oxidants have the poor affinity for Aβ42, low depolymerization efficiency, and difficulty in crossing the blood-brain barrier (BBB), hindering their application in the treatment of AD. Here, through hydrophobic interactions and hydrogen bonding, we integrated the near-infrared (NIR) photosensitizer indocyanine green with transferrin (denoted as TF-ICG), a protein with a high affinity for Aβ42, and demonstrated its anti-amyloid activity in vitro. TF-ICG was shown to bind to Aβ42 residues via hydrophobic interaction, impeding π-π stacking of Aβ42 peptide monomers and disassembling mature Aβ42 protofibrils in a concentration-dependent manner. More importantly, under NIR (808 nm, 0.6w/cm2) irradiation, TF-ICG completely inhibited the fibrillation process of Aβ42 to generate amorphous aggregates, with an inhibition rate of 96 % at only 65 nM. Meanwhile, TF-ICG could photo-oxidize rigid Aβ42 aggregates and break them down into small amorphous structures. Tyrosine fluorescence assay further demonstrated the intrinsic affinity and targeting of TF-ICG to Aβ42 fibrils. In vitro studies validated the anti-amyloid activity of TF-ICG, which provided a theoretical basis for further in vivo application as a BBB-penetrating nanotherapeutic platform.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kun Mei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
19
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
20
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
21
|
Benhamou Goldfajn N, Tang H, Ding F. Substoichiometric Inhibition of Insulin against IAPP Aggregation Is Attenuated by the Incompletely Processed N-Terminus of proIAPP. ACS Chem Neurosci 2022; 13:2006-2016. [PMID: 35704461 DOI: 10.1021/acschemneuro.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Substoichiometric aggregation inhibition of human islet amyloid polypeptide (IAPP), the hallmark of type 2 diabetes impacting millions of people, is crucial for developing clinic therapies, yet it remains challenging given that many candidate inhibitors require high doses. Intriguingly, insulin, the key regulatory polypeptide on blood glucose levels that are cosynthesized, costored, and cosecreted with IAPP by pancreatic β cells, has been identified as a potent inhibitor that can suppress IAPP amyloid aggregation at substoichiometric concentrations. Here, we computationally investigated the molecular mechanisms of the substoichiometric inhibition of insulin against the aggregation of IAPP and the incompletely processed IAPP (proIAPP) using discrete molecular dynamics simulations. Our results suggest that the amyloid aggregations of both IAPP and proIAPP might be disrupted by insulin through its binding with the shared amyloidogenic core sequences. However, the N-terminus of proIAPP competed with the amyloidogenic core sequences for the insulin interactions, resulting in attenuated inhibition by insulin. Moreover, insulin preferred to bind the elongation surfaces of IAPP seeds with fibril-like structure, with a stronger affinity than that of IAPP monomers. The capping of elongation surfaces by a small amount of insulin sterically prohibited the seed growth via monomer addition, achieving the substoichiometric inhibition. Together, our computational results provided molecular insights for the substoichiometric inhibition of insulin against IAPP aggregation, also the weakened effect on proIAPP. The uncovered substoichiometric inhibition by capping the elongation of amyloid seeds or fibrils may guide the rational designs of new potent inhibitors effective at low doses.
Collapse
Affiliation(s)
- Nadav Benhamou Goldfajn
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
22
|
Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022; 82:749-792. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.
Collapse
Affiliation(s)
- Shruti U Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Sarkhej-Sanand Circle Off. S.G. Road, Ahmedabad, Gujarat, 382210, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
23
|
Tang H, Sun Y, Ding F. Hydrophobic/Hydrophilic Ratio of Amphiphilic Helix Mimetics Determines the Effects on Islet Amyloid Polypeptide Aggregation. J Chem Inf Model 2022; 62:1760-1770. [PMID: 35311274 PMCID: PMC9123946 DOI: 10.1021/acs.jcim.1c01566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid depositions of human islet amyloid polypeptides (hIAPP) are associated with type II diabetes (T2D) impacting millions of people globally. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Helix mimetics, which modulate the protein-protein interaction by mimicking the side chain residues of a natural α-helix, were found to be a promising strategy for inhibiting hIAPP aggregation. Here, we applied molecular dynamics simulations to investigate two helix mimetics reported to have opposite effects on hIAPP aggregation in solution, the oligopyridylamide-based scaffold 1e promoted, whereas naphthalimide-appended oligopyridylamide scaffold DM 1 inhibited the aggregation of hIAPP in solution. We found that 1e promoted hIAPP aggregation because of the recruiting effects through binding with the N-termini of hIAPP peptides. In contrast, DM 1 with a higher hydrophobic/hydrophilic ratio effectively inhibited hIAPP aggregation by strongly binding with the C-termini of hIAPP peptides, which competed for the interpeptide contacts between amyloidogenic regions in the C-termini and impaired the fibrillization of hIAPP. Structural analyses revealed that DM 1 formed the core of hIAPP-DM 1 complexes and stabilized the off-pathway oligomers, whereas 1e formed the corona outside the hIAPP-1e complexes and remained active in recruiting free hIAPP peptides. The distinct interaction mechanisms of DM 1 and 1e, together with other reported potent antagonists in the literature, emphasized the effective small molecule-based amyloid inhibitors by disrupting peptide interactions that should reach a balanced hydrophobic/hydrophilic ratio, providing a viable and generic strategy for the rational design of novel anti-amyloid nanomedicine.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Physics, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
24
|
Yadav P, Chaturvedi S, Biswas SK, Srivastava R, Kailasam K, Mishra AK, Shanavas A. Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS OMEGA 2022; 7:8928-8937. [PMID: 35309447 PMCID: PMC8928496 DOI: 10.1021/acsomega.1c07324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 05/24/2023]
Abstract
Inorganic nanomaterials require optimal engineering to retain their functionality yet can also biodegrade within physiological conditions to avoid chronic accumulation in their native form. In this work, we have developed gelatin-stabilized iron oxide nanoclusters having a primary crystallite size of ∼10 nm and surface-functionalized with indocyanine green (ICG)-bound albumin-stabilized gold nanoclusters (Prot-IONs). The Prot-IONs are designed to undergo disintegration in an acidic microenvironment of tumor in the presence of proteolytic enzymes within 72 h. These nanoassemblies demonstrate bio- and hemocompatibility and show significant photothermal efficiency due to strong near infrared absorption contributed by ICG. The surface gold nanoclusters could efficiently sensitize hepatoma cells to γ-irradiation with substantial cytoskeletal and nuclear damage. Sequential irradiation of Prot-ION-treated cancer cells with near infrared (NIR) laser (λ = 750 nm) and γ-irradiation could cause ∼90% cell death compared to single treatment groups at a lower dose of nanoparticles. The superparamagnetic nature of Prot-IONs imparted significant relaxivity (∼225 mM-1 s-1) for T2-weighted magnetic resonance imaging. Additionally, they could also be engaged as photoacoustic and NIR imaging contrast agents. This work demonstrates bioeliminable inorganic nanoassemblies with significant theranostic potential.
Collapse
Affiliation(s)
- Pranjali Yadav
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shubhra Chaturvedi
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Samir Kumar Biswas
- Department
of Physical Sciences, Indian Institute of
Science Education & Research Mohali, Knowledge city, Sector 81, SAS Nagar, Manauli 140306, India
| | - Rohit Srivastava
- Department
of Biosciences & Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kamalakannan Kailasam
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Anil Kumar Mishra
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Asifkhan Shanavas
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| |
Collapse
|
25
|
Murugan C, Sundararajan V, Mohideen SS, Sundaramurthy A. Controlled decoration of nanoceria on the surface of MoS 2nanoflowers to improve the biodegradability and biocompatibility in Drosophila melanogastermodel. NANOTECHNOLOGY 2022; 33:205703. [PMID: 35090149 DOI: 10.1088/1361-6528/ac4fe4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, nanozymes based on two-dimensional (2D) nanomaterials have been receiving great interest for cancer photothermal therapy. 2D materials decorated with nanoparticles (NPs) on their surface are advantageous over conventional NPs and 2D material based systems because of their ability to synergistically improve the unique properties of both NPs and 2D materials. In this work, we report a nanozyme based on flower-like MoS2nanoflakes (NFs) by decorating their flower petals with NCeO2using polyethylenimine (PEI) as a linker molecule. A detailed investigation on toxicity, biocompatibility and degradation behavior of fabricated nanozymes in wild-typeDrosophila melanogastermodel revealed that there were no significant effects on the larval size, morphology, larval length, breadth and no time delay in changing larvae to the third instar stage at 7-10 d for MoS2NFs before and after NCeO2decoration. The muscle contraction and locomotion behavior of third instar larvae exhibited high distance coverage for NCeO2decorated MoS2NFs when compared to bare MoS2NFs and control groups. Notably, the MoS2and NCeO2-PEI-MoS2NFs treated groups at 100μg ml-1covered a distance of 38.2 mm (19.4% increase when compared with control) and 49.88 mm (no change when compared with control), respectively. High-resolution transmission electron microscopy investigations on the new born fly gut showed that the NCeO2decoration improved the degradation rate of MoS2NFs. Hence, nanozymes reported here have huge potential in various fields ranging from biosensing, cancer therapy and theranostics to tissue engineering and the treatment of Alzheimer's disease and retinal therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Vignesh Sundararajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| |
Collapse
|
26
|
Sahoo D, Behera SP, Shakya J, Kaviraj B. Cost-effective synthesis of 2D molybdenum disulfide (MoS2) nanocrystals: An exploration of the influence on cellular uptake, cytotoxicity, and bio-imaging. PLoS One 2022; 17:e0260955. [PMID: 35041665 PMCID: PMC8765608 DOI: 10.1371/journal.pone.0260955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022] Open
Abstract
Ultrasmall MoS2 nanocrystals have unique optoelectronic and catalytic properties that have acquired significant attraction in many areas. We propose here a simple and economical method for synthesizing the luminescent nanocrystals MoS2 using the hydrothermal technique. In addition, the synthesized MoS2 nanocrystals display photoluminescence that is tunable according to size. MoS2 nanocrystals have many advantages, such as stable dispersion, low toxicity and luminescent characteristics, offering their encouraging applicability in biomedical disciplines. In this study, human lung cancer epithelial cells (A549) are used to assess fluorescence imaging of MoS2 nanocrystals. MTT assay, trypan blue assay, flow cytometry and fluorescence imaging results have shown that MoS2 nanocrystals can selectively target and destroy lung cancer cells, especially drug-resistant cells (A549).
Collapse
Affiliation(s)
- Dhirendra Sahoo
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, Greater Noida, India
| | | | - Jyoti Shakya
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Bhaskar Kaviraj
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, Greater Noida, India
| |
Collapse
|
27
|
Tang H, Li Y, Kakinen A, Andrikopoulos N, Sun Y, Kwak E, Davis TP, Ding F, Ke PC. Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Phys Chem Chem Phys 2021; 24:86-97. [PMID: 34878460 PMCID: PMC8771921 DOI: 10.1039/d1cp04246g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aβ) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aβ in its three representative forms of monomers (Aβ-m), oligomers (Aβ-o), and amyloid fibrils (Aβ-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aβ species, especially by the most toxic Aβ-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aβ species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aβ, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
28
|
Zhu H, Li Z, Ye E, Leong DT. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60351-60361. [PMID: 34874695 DOI: 10.1021/acsami.1c17608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal dichalcogenide (TMD)-based nanomaterials have been extensively explored for the photonic therapy. To the best of our knowledge, near-infrared (NIR) light is a requirement for the photothermal therapy (PTT) to achieve the feature of deep-tissue penetration, whereas no obvious absorption peaks existing in the NIR region for existing TMD nanomaterials limit their therapeutic efficacy. As one category of TMD nanomaterials, ruthenium sulfide-based nanomaterials have been less exploited in biomedical applications including tumor therapy so far. Here, we develop a facile biomineralization-assisted bottom-up strategy to synthesize oxygenic hybrid ruthenium sulfide nanoclusters (RuSx NCs) by regulating the oxygen amounts and sulfur defects for the optimized PTT. By regulating the increasing initial molar ratios of Ru to S, RuSx NCs with small sizes were endowed with increasing oxygen contents and sulfur defects, leading to the photothermal conversion efficiency (PCE) increasing from 32.8 to 41.9%, which were higher than that of most small-sized inorganic photothermal nanoagents. In contrast to commercial indocyanine green, these RuSx NCs exhibited higher photostability under NIR laser irradiation. The high PCE and superior photostability allowed RuSx NCs to effectively and completely ablate cancer cells. Thus, the proposed defect engineering strategy endows RuSx NCs with an excellent photothermal effect for the PTT of tumors of living mice, which also proves the potential of further exploring the properties of RuSx NCs for future biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|