1
|
de Boa PWM, de Sousa Santos K, da Silva Souza AM, da Silva-Júnior AA, Borges BCD. Impact of nanostructured additives in tooth bleaching agents on enhancing color change and reducing side effects: a scoping review. Clin Oral Investig 2025; 29:70. [PMID: 39833560 DOI: 10.1007/s00784-025-06148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES This study aimed to determine whether incorporating nanostructured additives into bleaching agents enhances efficacy and reduces side effects while identifying gaps for further investigation. METHODS A comprehensive search was conducted in electronic databases, including PubMed/Medline, Embase, Scopus, and ISI Web of Science. Two reviewers independently screened articles based on predefined criteria, resolving discrepancies through discussion or consultation with a third reviewer. Data extraction focused on key details, including study design, interventions, and outcomes. RESULTS Twenty-one articles were reviewed, consisting of nine clinical studies, one in vivo/in situ study, and 11 in vitro studies on tooth bleaching protocols. Hydrogen peroxide was the most commonly used bleaching agent. The primary nanostructured additives studied were titanium dioxide nanoparticles, polymeric carbamide peroxide nanoparticles, chitosan nanoparticles, nano-hydroxyapatite, SiO2/MgO/Fe2O3 nanocomposite spheres, and nano-bioactive glass. Most studies demonstrated an enhanced bleaching effect, reduced bleaching sensitivity, decreased cytotoxicity, reduced hydrogen peroxide penetration into the pulp chamber, and protection of the tooth surface against mineral and structural loss when nanostructured additives were incorporated into the bleaching agent. CONCLUSIONS Incorporating nanostructured additives into tooth-bleaching agents improved efficacy and reduced side effects, especially with titanium oxide nanoparticles. Further clinical studies and systematic reviews are needed to establish strong evidence for safe clinical practice. CLINICAL RELEVANCE Including nanostructured additives in bleaching agents, such as titanium oxide nanoparticles, might be a valuable approach to enhancing the bleaching potential while reducing bleaching sensitivity and cytotoxicity, offering safer alternatives for clinical protocols.
Collapse
Affiliation(s)
| | - Kaiza de Sousa Santos
- Department of Dentistry, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | | | | |
Collapse
|
2
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
4
|
Dirersa W, Kan TC, Chang J, Getachew G, Ochirbat S, Kizhepat S, Wibrianto A, Rasal A, Chen HA, Ghule AV, Chou TH, Chang JY. Engineering H 2O 2 Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24172-24190. [PMID: 38688027 PMCID: PMC11103653 DOI: 10.1021/acsami.3c18888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Worku
Batu Dirersa
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jungshan Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program for Cell Therapy and Regeneration Medicine, College
of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shamsa Kizhepat
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash Rasal
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Hung-An Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Anil Vithal Ghule
- Green
Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Tzung-Han Chou
- Department
of Chemical and Materials Engineering, National
Yunlin University of Science and Technology, Yunlin 64002, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
5
|
Xie Z, Meng Q, Hu Y, Tang Y, Wang K, Zhang Y, Yu X, Zhao K, Xu C. Amorphous titanium dioxide with abundant defects induced by incorporation of silicon dioxide: A potential non-radical activator of hydrogen peroxide. J Colloid Interface Sci 2024; 653:1006-1017. [PMID: 37778150 DOI: 10.1016/j.jcis.2023.09.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Catalysts based on titanium dioxide (TiO2) have demonstrated a significant potential for oxidizing intractable organic pollutants in heterogenous Fenton-like reactions, even in the absence of light irradiation. In this study, defective amorphous TiO2 enriched Ti3+ and oxygen vacancies (Ov) was synthesized by incorporation of silicon dioxide (SiO2) via a simple sol-gel method. Based on a systematic exploration, an optimal amount of SiO2 was found to be crucial in promoting the formation of Ov and Ti3+, which was achieved by maximizing the non-hexacoordinate structure (Ti4/5/7c) in amorphous TiO2. Furthermore, an unusual singlet oxygen (1O2) based non-radical mechanism was confirmed. It was proposed that the hydroxyl radicals (•OH) produced by Ti3+ active sites during hydrogen peroxide (H2O2) activation may adsorb on the TiO2 surface for extended periods, owing to their favorable interactions with the surface Ov and hydroxyl groups (-OH), thus facilitating their transformation to 1O2. Moreover, the optimized catalyst exhibited favorably catalytic performance across a broad pH range (3-11), making it a promising candidate for applications in rigorous environmental conditions.
Collapse
Affiliation(s)
- Zhangwen Xie
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Qingnan Meng
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Yanzhe Hu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Kai Wang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yagang Zhang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xiaojing Yu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Kang Zhao
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Chunjie Xu
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Xi'an Key Laboratory of Advanced Magnesium Alloy Additive Manufacturing and Precision Forming, Xi'an 710048, PR China
| |
Collapse
|
6
|
Wang M, Jiang M, Ma C, Zhao C, Lai W, Li J, Wang D, Hong C, Qi Y. Construction of a Dual-Mode Immune Platform Based on the Photothermal Effect of AgCo@NC NPs for the Detection of α-Fetoprotein. Anal Chem 2023; 95:16225-16233. [PMID: 37877873 DOI: 10.1021/acs.analchem.3c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Compared with the accuracy of a single signal and the limitation of environmental applicability, the application value of dual-mode detection is gradually increasing. To this end, based on the photothermal effect of Ag/Co embedded N-rich mesoporous carbon nanomaterials (AgCo@NC NPs), we designed a dual-mode signal response system for the detection of α-fetoprotein (AFP). First, AgCo@NC NPs act as a photothermal immunoprobe that converts light energy into heat driven by a near-infrared (NIR) laser and obtains temperature changes corresponding to the analyte concentration on a hand-held thermal imager. In addition, this temperature recognition system can significantly improve the efficiency of Fenton-like reactions. AgCo@NC NPs act as peroxidase mimics to initiate the generation of poly N-isopropylacrylamide (PNIPAM, resistance enhancer) by cascade catalysis and the degradation of methylene blue (MB), thus enabling electrochemical testing. The dual-mode assay ranges from 0.01 to 100 and 0.001-10 ng/mL, with lower limits of detection (LOD) of 3.2 and 0.089 pg/mL, respectively, and combines visualization, portability, and high efficiency, opening new avenues for future clinical diagnostics and inhibitor studies.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Mingzhe Jiang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chaoyun Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chulei Zhao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wenjing Lai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jiajia Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Dasheng Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chenglin Hong
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yu Qi
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
7
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
8
|
Zhang Q, Liu Y, Ding M, Yuwen L, Wang L. On-Demand Free Radical Release by Laser Irradiation for Photothermal-Thermodynamic Biofilm Inactivation and Tooth Whitening. Gels 2023; 9:554. [PMID: 37504433 PMCID: PMC10379348 DOI: 10.3390/gels9070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Dental diseases associated with biofilm infections and tooth staining affect billions of people worldwide. In this study, we combine photothermal agents (MoS2@BSA nanosheets, MB NSs), a thermolysis free-radical initiator (AIPH), and carbomer gel to develop laser-responsive hydrogel (MBA-CB Gel) for biofilm inactivating and tooth whitening. Under a physiological temperature without laser irradiation, MB NSs can eliminate free radicals generated from the slow decomposition of AIPH due to their antioxidative activity, thereby avoiding potential side effects. A cytotoxicity study indicates that MB NSs can protect mammalian cells from the free radicals released from AIPH without laser irradiation. Upon exposure to laser irradiation, MB NSs promote the rapid decomposition of AIPH to release free radicals by photothermal effect, suggesting their on-demand release ability of free radicals. In vitro experimental results show that the bacteria inactivation efficiency is 99.91% (3.01 log units) for planktonic Streptococcus mutans (S. mutans) and 99.98% (3.83 log units) for planktonic methicillin-resistant Staphylococcus aureus (MRSA) by the mixed solution of MB NSs and AIPH (MBA solution) under 808 nm laser irradiation (1.0 W/cm2, 5 min). For S. mutans biofilms, an MBA solution can inactivate 99.97% (3.63 log units) of the bacteria under similar laser irradiation conditions. Moreover, MBA-CB Gel can whiten an indigo carmine-stained tooth under laser irradiation after 60 min of laser treatment, and the color difference (ΔE) in the teeth of the MBA-CB Gel treatment group was 10.9 times that of the control group. This study demonstrates the potential of MBA-CB Gel as a promising platform for biofilm inactivation and tooth whitening. It is worth noting that, since this study only used stained models of extracted teeth, the research results may not fully reflect the actual clinic situation. Future clinical research needs to further validate these findings.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medicine School, Nanjing University, Nanjing 210008, China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
9
|
Tan X, Liu S, Hu X, Zhang R, Su X, Qian R, Mai Y, Xu Z, Jing W, Tian W, Xie L. Near-Infrared-Enhanced Dual Enzyme-Mimicking Ag-TiO 2-x@Alginate Microspheres with Antibactericidal and Oxygeneration Abilities to Treat Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:391-406. [PMID: 36562459 DOI: 10.1021/acsami.2c17065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effective treatment for periodontitis is to completely and sustainedly eradicate the bacterial pathogens from the complex periodontal pockets. Local sustained-release antibiotics as a complementary treatment after scaling and root planning can sustainedly combat bacterial pathogens in the periodontal pockets to help treat the disease, but the increasing concern of bacterial resistance limits its future use. Here, we reported a local antibacterial system based on microsized multifunctional Ag-TiO2-x encapsulated in alginate (ATA) microspheres. We confirmed that ATA displayed strong photothermally enhanced dual enzyme-mimicking (peroxidase-like and catalase-like) activities and weak photocatalytic activity under 808 nm near-infrared (NIR) irradiation, which could boost the generation of reactive oxygen species (ROS) and O2 in the presence of low-level H2O2. As a result, the ATA/H2O2/NIR system exhibited efficient antibacterial activity against Porphyromonas gingivalis and Streptococcus gordonii in both planktonic and biofilm forms. With the help of ROS, ATA could release Ag+ in concentrations sufficient to inhibit periodontal pathogens as well. Moreover, the in situ-generated oxygen was supposed to alleviate the local hypoxic environment and would help downregulate the lipopolysaccharide-mediated inflammatory response of periodontal stem cells. The in vivo rat periodontitis treatment results demonstrated that the ATA/H2O2/NIR system reduced the bacterial load, relieved inflammation, and improved tissue healing. Our work developed a new local prolonged bactericidal and oxygenation system for enhanced periodontitis. Avoiding the usage of antibiotics and nanomaterials, this strategy showed great promise in adjunctive periodontitis treatment and also in other biomedical applications.
Collapse
Affiliation(s)
- Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Mai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li Q, Liu J, Xu Y, Liu H, Zhang J, Wang Y, Sun Y, Zhao M, Liao L, Wang X. Fast Cross-Linked Hydrogel as a Green Light-Activated Photocatalyst for Localized Biofilm Disruption and Brush-Free Tooth Whitening. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28427-28438. [PMID: 35703379 DOI: 10.1021/acsami.2c00887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofilm-driven caries and tooth discoloration are two major problems in oral health care. The current methods have the disadvantages of insufficient biofilm targeting and irreversible enamel damage. Herein, an injectable sodium alginate hydrogel membrane doped with bismuth oxychloride (Bi12O17Cl2) and cubic cuprous oxide (Cu2O) nanoparticles was designed to simultaneously achieve local tooth whitening and biofilm removal through a photodynamic dental therapy process. This fast cross-linked hydrogel could form a biofilm removal coating on the target tooth surface precisely. Afterward, reactive oxygen species was effectively released on demand under green light, which could not only eradicate the biofilm but also whiten the tooth non-destructively in a facile manner without significant damage to both the enamel and biological cells. After the usage, the removal of this hydrogel can also enhance the effect of biofilm destruction and caries prevention.
Collapse
Affiliation(s)
- Qun Li
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jinbiao Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yingying Xu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Huijie Liu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jiao Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yanan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yue Sun
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Mengzhen Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Lan Liao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
12
|
Liu M, Huang L, Xu X, Wei X, Yang X, Li X, Wang B, Xu Y, Li L, Yang Z. Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS NANO 2022; 16:9479-9497. [PMID: 35713471 DOI: 10.1021/acsnano.2c02518] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oral infectious diseases and tooth staining, the main challenges of dental healthcare, are inextricably linked to microbial colonization and the formation of pathogenic biofilms. However, dentistry has so far still lacked simple, safe, and universal prophylactic options and therapy. Here, we report copper-doped carbon dots (Cu-CDs) that display enhanced catalytic (catalase-like, peroxidase-like) activity in the oral environment for inhibiting initial bacteria (Streptococcus mutans) adhesion and for subsequent biofilm eradication without impacting the surrounding oral tissues via oxygen (O2) and reactive oxygen species (ROS) generation. Especially, Cu-CDs exhibit strong affinity for lipopolysaccharides (LPS) and peptidoglycans (PGN), thus conferring them with excellent antibacterial ability against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), such that they can prevent wound purulent infection and promoting rapid wound healing. Additionally, the Cu-CDs/H2O2 system shows a better performance in tooth whitening, compared with results obtained with other alternatives, e.g., CDs and clinically used H2O2, particularly its negligible enamel and dentin destruction. It is anticipated that the biocompatible Cu-CDs presented in this work are a promising nano-mouthwash for eliminating oral pathogenic biofilms, prompting wound healing as well as tooth whitening, highlighting their significance in oral health management.
Collapse
Affiliation(s)
- Meng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ling Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xingyi Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xiaoming Wei
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xianfeng Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xiaolei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Yue Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Zhongmin Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|