1
|
Hiefinger C, Zinner G, Fürtges TF, Narindoshvili T, Schindler S, Bruckmann A, Rudack T, Raushel FM, Sterner R. Photocontrolling the Enantioselectivity of a Phosphotriesterase via Incorporation of a Light-Responsive Unnatural Amino Acid. JACS AU 2025; 5:858-870. [PMID: 40017780 PMCID: PMC11863162 DOI: 10.1021/jacsau.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
The external control of catalytic activity and substrate specificity of enzymes by light has aroused great interest in the fields of biocatalysis and pharmacology. Going beyond, we have attempted to photocontrol enzyme stereoselectivity on the example of phosphotriesterase (PTE), which is capable of hydrolyzing a wide variety of racemic organophosphorus substrates where one of two enantiomers is often highly toxic. To pursue this goal, the photocaged unnatural amino acid o-nitrobenzyl-l-tyrosine (ONBY) was incorporated by genetic code expansion at the large subsite of the active center, together with additional mutations at the small subsite. The stereoselectivities of the resulting PTE variants were tested with the achiral control substrate paraoxon and four different racemic substrates, which contained a p-nitrophenol leaving group in combination with either methyl-phenyl, ethyl-phenyl, methyl-cyclohexyl, or ethyl-cyclohexyl substituents. Comparison of the enantioselectivities (k cat/K M for Sp divided by k cat/K M for Rp) before and after decaging of ONBY using irradiation revealed the desired photoinduced inversion of enantioselectivity for three of the variants: PTE_I106A-H257ONBY exhibited a 43-fold stereoselectivity switch for the methyl-phenyl substrate, PTE_I106A-F132A-H257ONBY a 184-fold stereoselectivity switch for the methyl-cyclohexyl substrate, and PTE_I106A-F132A-S308A-H257ONBY a 52-fold and a 57-fold stereoselectivity switch for the methyl-cyclohexyl and the ethyl-cyclohexyl substrates. A computational analysis including molecular dynamics simulations and docking showed that a complicated interplay between steric constraints and specific enzyme-substrate interactions is responsible for the observed effects. Our findings significantly broaden the scope of possibilities for the spatiotemporal control of enantioselective transformations using light in biocatalytic systems.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Gabriel Zinner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Torben F. Fürtges
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Tamari Narindoshvili
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Sebastian Schindler
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Astrid Bruckmann
- Institute
of Biochemistry, Genetics and Microbiology, Regensburg Center for
Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Till Rudack
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Frank M. Raushel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Yue J, Li Z, Liu X, Wu Z, Wang J, Tu M, Shi H, Fan D, Li Y. Green and Fast Synthesis of NiCo-MOF for Simultaneous Purification-Immobilization of Bienzyme to Catalyze the Synthesis of Ginsenoside Rh2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61725-61738. [PMID: 39475531 DOI: 10.1021/acsami.4c14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Traditional metal-organic frameworks (MOFs) preparation is generally time-consuming, polluting, and lacking specificity for enzyme immobilization. This paper introduced a facile, rapid, and green method to produce three MOFs subsequently employed to purify and coimmobilize recombinant glycosyltransferase (UGT) and recombinant sucrose synthetase (SUSy) using histidine tag (His-tag) for the specific adsorption of Ni2+ and Co2+ from MOFs. This method simplified enzyme purification from crude extracts and enabled enzymes to be reused. The results demonstrated that NiCo-MOF exhibited a higher enzyme load (115.9 mg/g) than monometallic MOFs. Additionally, the NiCo-MOF@UGT&SUSy demonstrated excellent stability and efficiently produced the rare ginsenoside Rh2 by catalyzing a coupling reaction (95.6 μg/mL), solving the problem of the substrate cost of uridine diphosphate glucose (UDPG). The NiCo-MOF@UGT&SUSy retained 68.97% of the initial activity after 10 cycles. Finally, molecular docking studies elucidated the conversion mechanism of the target product Rh2. This technique is important in the industrialization of ginsenoside production and enzyme purification.
Collapse
Affiliation(s)
- Junsong Yue
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Zhiyan Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Jianwen Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Min Tu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Huaiqi Shi
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Daidi Fan
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
3
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Sterin I, Hadynski J, Tverdokhlebova A, Masi M, Katz E, Wriedt M, Smutok O. Electrochemical and Biocatalytic Signal-Controlled Payload Release from a Metal-Organic Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308640. [PMID: 37747462 DOI: 10.1002/adma.202308640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Indexed: 09/26/2023]
Abstract
A metal-organic framework (MOF), ZIF-8, which is stable at neutral and slightly basic pH values in aqueous solutions and destabilized/dissolved under acidic conditions, is loaded with a pH-insensitive fluorescent dye, rhodamine-B isothiocyanate, as a model payload species. Then, the MOF species are immobilized at an electrode surface. The local (interfacial) pH value is rapidly decreased by means of an electrochemically stimulated ascorbate oxidation at +0.4 V (Ag/AgCl/KCl). Oxygen reduction upon switching the applied potential to -0.8 V allows to return the local pH to the neutral/basic pH, then stopping rapidly the release process. The developed method allows electrochemical control over stimulated or inhibited payload release processes from the MOF. The pH variation proceeds in a thin film of the solution near the electrode surface. The switchable release process is realized in a buffer solution and undiluted human serum. As the second option, the pH decrease stimulating the release process is achieved upon an enzymatic reaction using esterase and ester substrate. This approach potentially allows the release activation controlled by numerous enzymes assembled in complex biocatalytic cascades. It is expected that related electrochemical or biocatalytic systems can represent novel signal-responding materials with switchable features for delivering (bio)molecules within biomedical applications.
Collapse
Affiliation(s)
- Ilya Sterin
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - John Hadynski
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Anna Tverdokhlebova
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Madeline Masi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Mario Wriedt
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
5
|
Smutok O, Katz E. Biosensors: Electrochemical Devices-General Concepts and Performance. BIOSENSORS 2022; 13:44. [PMID: 36671878 PMCID: PMC9855974 DOI: 10.3390/bios13010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This review provides a general overview of different biosensors, mostly concentrating on electrochemical analytical devices, while briefly explaining general approaches to various kinds of biosensors, their construction and performance. A discussion on how all required components of biosensors are brought together to perform analytical work is offered. Different signal-transducing mechanisms are discussed, particularly addressing the immobilization of biomolecular components in the vicinity of a transducer interface and their functional integration with electronic devices. The review is mostly addressing general concepts of the biosensing processes rather than specific modern achievements in the area.
Collapse
|
6
|
Badenhorst R, Roquero DM, Katz E, Smutok O. Multifunctional Hybrid Nanocomposite Hydrogel Releasing Different Biomolecular Species Triggered with Different Biochemical Signals Processed by Orthogonal Biocatalytic Reactions. ACS APPLIED BIO MATERIALS 2022; 5:5513-5517. [PMID: 36468916 DOI: 10.1021/acsabm.2c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A micro/nanoshaped system composed of alginate microspheres (microgels) decorated with silica oxide nanoparticles functionalized with nitroavidin was used for on-demand biomolecule release stimulated by different input signals. Enzymes preloaded in the microgels processed the applied signals producing either basic pH locally near the microspheres or generating H2O2 inside the hydrogel, or both simultaneously. The pH increase resulted in cleavage of the affinity bonds between nitroavidin and biotin, then releasing the latter. The H2O2 produced resulted in oxidative cleavage of cross-linking bonds in the alginate matrix, then opening pores and releasing a loaded model protein (bovine serum albumin).
Collapse
Affiliation(s)
- Ronaldo Badenhorst
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York 13699, United States
| | - Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York 13699, United States
| |
Collapse
|
7
|
Wu Q, Ma C, Chen L, Sun Y, Wei X, Ma C, Zhao H, Yang X, Ma X, Zhang C, Duan G. A Tissue Paper/Hydrogel Composite Light-Responsive Biomimetic Actuator Fabricated by In Situ Polymerization. Polymers (Basel) 2022; 14:polym14245454. [PMID: 36559822 PMCID: PMC9785941 DOI: 10.3390/polym14245454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Stimulus-responsive hydrogels are an important member of smart materials owing to their reversibility, soft/wet properties, and biocompatibility, which have a wide range of applications in the field of intelligent actuations. However, poor mechanical property and complicated fabrication process limit their further applications. Herein, we report a light-responsive tissue paper/hydrogel composite actuator which was developed by combining inkjet-printed tissue paper with poly(N-isopropylacrylamide) (PNIPAM) hydrogel through simple in situ polymerization. Due to the high strength of natural tissue paper and the strong interaction within the interface of the bilayer structure, the mechanical property of the composite actuator was highly enhanced, reaching 1.2 MPa of tensile strength. Furthermore, the light-responsive actuation of remote manipulation can be achieved because of the stamping graphite with high efficiency of photothermal conversion. Most importantly, we also made a few remotely controlled biomimetic actuating devices based on the near-infrared (NIR) light response of this composite actuator. This work provides a simple strategy for the construction of biomimetic anisotropic actuators and will inspire the exploration of new intelligent materials.
Collapse
Affiliation(s)
- Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Hongliang Zhao
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| |
Collapse
|
8
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Wells PK, Melman A, Katz E, Smutok O. Fluorescent sensor based on pyrroloquinoline quinone (PQQ)-glucose dehydrogenase for glucose detection with smartphone-adapted signal analysis. Mikrochim Acta 2022; 189:371. [PMID: 36064809 DOI: 10.1007/s00604-022-05466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
A new nano-structured platform for fluorescent analysis using PQQ-dependent glucose dehydrogenase (PQQ-GDH) was developed, particularly using a smartphone for transduction and quantification of optical signals. The PQQ-GDH enzyme was immobilized on SiO2 nanoparticles deposited on glass microfiber filter paper, providing a high load of the biocatalytic enzyme. The platform was tested and optimized for glucose determination using a wild type of the PQQ-GDH enzyme. The analysis was based on the fluorescence generated by the reduced form of phenazine methosulfate produced stoichiometrically to the glucose concentration. The fluorescent signals were generated at separate analytical spots on the paper support under wavelength (365 nm) UV excitation. The images of the analytical spots, dependent on the glucose concentration, were obtained using a photo camera of a standard smartphone. Then, the images were processed and quantified using software installed in a smartphone. The developed biocatalytic platform is the first step to assembling a large variety of biosensors using the same platform functionalized with artificial allosteric chimeric PQQ-dependent glucose dehydrogenase activated with different analytes. The future combination of the artificial enzymes, the presently developed analytical platform, and signal processing with a smartphone will lead to novel point-of-care and end-user biosensors applicable to virtually all possible analytes.
Collapse
Affiliation(s)
- Paulina K Wells
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA.
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
10
|
Zhang Y, Gao S, Qi X, Zhu S, Xu S, Liang Y, Kong F, Yang S, Wang R, Wang Y, An Y. Novel biocatalytic strategy of levan: His-ELP-intein-tagged protein purification and biomimetic mineralization. Carbohydr Polym 2022; 288:119398. [DOI: 10.1016/j.carbpol.2022.119398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 01/13/2023]
|
11
|
Samuelsen L, Larsen D, Schönbeck C, Beeren SR. pH-Responsive templates modulate the dynamic enzymatic synthesis of cyclodextrins. Chem Commun (Camb) 2022; 58:5152-5155. [PMID: 35383788 DOI: 10.1039/d1cc06554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Product selection in the dynamic enzymatic synthesis of cyclodextrins can be controlled by changing the pH. Using cyclodextrin glucanotransferase to make labile the glycosidic linkages in cyclodextrins (CDs), we generate a dynamic combinatorial library of interconverting linear and cyclic α-1,4-glucans. Templates can be employed to favour the selective production of specific CDs and, herein, we show that by using ionisable templates, the synthesis of α-CD or β-CD can be favoured by simply changing the pH. Using 4-nitrophenol as the template, β-CD is the preferred product at low pH, while α-CD is the preferred product at high pH. Furthermore, a new methodology is described for the simulation of product distributions in dynamic combinatorial libraries with ionisable templates at any given pH.
Collapse
Affiliation(s)
- Lisa Samuelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.,Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Othman A, Smutok O, Kim Y, Minko S, Melman A, Katz E. A magneto-controlled biocatalytic cascade with a fluorescent output. Org Biomol Chem 2022; 20:1869-1873. [PMID: 35156979 DOI: 10.1039/d1ob02313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biocatalytic cascade based on concerted operation of pyruvate kinase and luciferase with a bioluminescent output was switched reversibly between low and high activity by applying an external magnetic field at different positions or removing it. The enzymes participating in the reaction cascade were bound to magnetic nanoparticles to allow their translocation or aggregation/dispersion to be controlled by the magnetic field. The reaction intensity, measured as the bioluminescent output, was dependent on the effective distances between the enzymes transported on the magnetic nanoparticles controlled by the magnets.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Yongwook Kim
- Nanostructured Materials Lab, University of Georgia, Athens, GA 30602, USA
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, GA 30602, USA
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| |
Collapse
|
13
|
Massana Roquero D, Smutok O, Othman A, Melman A, Katz E. "Smart" Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS APPLIED BIO MATERIALS 2021; 4:8487-8497. [PMID: 35005932 DOI: 10.1021/acsabm.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
"Smart" drug-delivery systems have significant potential to increase therapeutic efficiency, avoid undesired immune responses, and minimize drug side effects. Herein, we report on an innovative strategy to control the drug release process using two magneto-activated materials operating in the system. One of them, a polyvinyl alcohol (PVA)-diboronate (DB)-interpenetrated (IPN) alginate (Alg) microgel nanocomposite (PVA-DB-IPN-Alg) loaded with magnetic nanoparticles (MNPs), is acting as a drug-delivery system. The drugs or model (bio)molecules are loaded in the PVA-DB-IPN-Alg and then released upon receiving a magnetic signal. Another component of the system is represented with the MNPs functionalized with the glucose oxidase (GOx) enzyme, GOx-MNPs. The immobilized GOx biocatalytically produces H2O2 in the presence of glucose and oxygen, while the PVA-DB-IPN-Alg is decomposed/dissolved by reacting with H2O2. In the absence of a magnet, the biocatalytically produced H2O2 was mostly decomposed by the catalase enzyme present in the solution, thus not reaching the alginate microgel. Upon aggregation of these two types of particles induced by a magnet, the GOx-MNPs produced H2O2 in situ increasing locally its concentration, degrading the PVA-DB-IPN, thus opening pores in the alginate hydrogel resulting in a faster release of the entrapped payload. The release of the payload was confirmed in physiological complex environments, exemplified with human serum, demonstrating the stability and functionality of the materials in biological fluids. The release rate was strongly dependent on the concentration of catalase but not dependent on glucose concentration. The magneto-induced release process was confirmed for the small model protein payload, such as bovine serum albumin (BSA), as well as the trastuzumab monoclonal antibody (TmAb). For the latter, the release rate was up to 3.3 times higher in the presence of the magnet than in the absence of it in the human serum. We expect that the drug-delivery concept developed by these materials can find useful applications in the emerging field of "smart" materials in immunotherapy.
Collapse
Affiliation(s)
- Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|