1
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Fan Q, Sun B, Chao J. Advancements in Engineering Tetrahedral Framework Nucleic Acids for Biomedical Innovations. SMALL METHODS 2024:e2401360. [PMID: 39487613 DOI: 10.1002/smtd.202401360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Tetrahedral framework nucleic acids (tFNAs) are renowned for their controllable self-assembly, exceptional programmability, and excellent biocompatibility, which have led to their widespread application in the biomedical field. Beyond these features, tFNAs demonstrate unique chemical and biological properties including high cellular uptake efficiency, structural bio-stability, and tissue permeability, which are derived from their distinctive 3D structure. To date, an extensive range of tFNA-based nanostructures are intelligently designed and developed for various biomedical applications such as drug delivery, gene therapy, biosensing, and tissue engineering, among other emerging fields. In addition to their role in drug delivery systems, tFNAs also possess intrinsic properties that render them highly effective as therapeutic agents in the treatment of complex diseases, including arthritis, neurodegenerative disorders, and cardiovascular diseases. This dual functionality significantly enhances the utility of tFNAs in biomedical research, presenting valuable opportunities for the development of next-generation medical technologies across diverse therapeutic and diagnostic platforms. Consequently, this review comprehensively introduces the latest advancements of tFNAs in the biomedical field, with a focus on their benefits and applications as drug delivery nanoplatforms, and their inherent capabilities as therapeutic agents. Furthermore, the current limitations, challenges, and future perspectives of tFNAs are explored.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Bicheng Sun
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China
| |
Collapse
|
3
|
Yao X, He D, Wei P, Niu Z, Chen H, Li L, Fu P, Wang Y, Lou S, Qian S, Zheng J, Zuo G, Wang K. DNA Nanomaterial-Empowered Surface Engineering of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306852. [PMID: 38041689 DOI: 10.1002/adma.202306852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted biological nanoparticles that are critical mediators of intercellular communication. They contain diverse bioactive components, which are promising diagnostic biomarkers and therapeutic agents. Their nanosized membrane-bound structures and innate ability to transport functional cargo across major biological barriers make them promising candidates as drug delivery vehicles. However, the complex biology and heterogeneity of EVs pose significant challenges for their controlled and actionable applications in diagnostics and therapeutics. Recently, DNA molecules with high biocompatibility emerge as excellent functional blocks for surface engineering of EVs. The robust Watson-Crick base pairing of DNA molecules and the resulting programmable DNA nanomaterials provide the EV surface with precise structural customization and adjustable physical and chemical properties, creating unprecedented opportunities for EV biomedical applications. This review focuses on the recent advances in the utilization of programmable DNA to engineer EV surfaces. The biology, function, and biomedical applications of EVs are summarized and the state-of-the-art achievements in EV isolation, analysis, and delivery based on DNA nanomaterials are introduced. Finally, the challenges and new frontiers in EV engineering are discussed.
Collapse
Affiliation(s)
- Xuxiang Yao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Dongdong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Pengyao Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China
| | - Saiyun Lou
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
- Ningbo Second Hospital, Ningbo, 315010, P. R. China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| |
Collapse
|
4
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
5
|
Bi S, He H, Gao F, Zhao Y. Ultrasensitive Photoelectrochemical Biosensor for Dual-miRNAs Detection Based on Molecular Logic Gates and Methylene Blue Sensitized ZnO@CdS@Au Nanorods. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36194-36203. [PMID: 38952261 DOI: 10.1021/acsami.4c08276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The occurrence of cancer is often closely related to multiple tumor markers, so it is important to develop multitarget detection methods. By the proper design of the input signals and logical operations of DNA logic gates, detection and diagnosis of cancer at different stages can be achieved. For example, in the early stages, specific input signals can be designed to correspond to early specific tumor markers, thereby achieving early cancer detection. In the late stage, logic gates for multitarget detection can be designed to simultaneously detect multiple biomarkers to improve diagnostic accuracy and comprehensiveness. In this work, we constructed a dual-target-triggered DNA logic gate for anchoring DNA tetrahedra, where methylene blue was embedded in the DNA tetrahedra to sensitize ZnO@CdS@Au, achieving ultrasensitive detection of the target substance. We tested the response of AND and OR logic gates to the platform. For AND logic gates, the sensing platform only responds when both miRNAs are present. In the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. Subsequently, we used OR logic gates for miRNA detection. Even if only one target exists, the sensing platform exhibits excellent performance. Similarly, within the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. The minimum detection limit is 1.10 aM. Whether it is the need to detect multiple targets simultaneously or only one of them, we can achieve it by selecting the appropriate logic gate. This strategy holds promising application prospects in fields such as biosensing, medical diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Shiliang Bi
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hanxiao He
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Faming Gao
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yang Zhao
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Wei X, Wang X, Fu Y, Zhang X, Yan F. Emerging trends in CDs@hydrogels composites: from materials to applications. Mikrochim Acta 2024; 191:355. [PMID: 38809308 DOI: 10.1007/s00604-024-06411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.
Collapse
Affiliation(s)
- Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiangyu Zhang
- The First Affiliated Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Traditional Chinese Medicine, Tianjin, 300381, China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China.
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
7
|
Li Y, Zhou P, Wang Z, Ren Y, Zhu X, Wang J, Yan H, Hua L, Gao F. Sea Anemone-like Nanomachine Based on DNA Strand Displacement Composed of Three Boolean Logic Gates: Diversified Input for Intracellular Multitarget Detection. Anal Chem 2024; 96:4120-4128. [PMID: 38412037 DOI: 10.1021/acs.analchem.3c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.
Collapse
Affiliation(s)
- Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Zhenxin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
8
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
9
|
Liu B, Zhao D, Chen J, Shi M, Yuan K, Sun H, Meng HM, Li Z. DNA Logical Device Combining an Entropy-Driven Catalytic Amplification Strategy for the Simultaneous Detection of Exosomal Multiplex miRNAs In Situ. Anal Chem 2024; 96:1733-1741. [PMID: 38227423 DOI: 10.1021/acs.analchem.3c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Exosomal miRNAs are considered promising biomarkers for cancer diagnosis, but their accuracy is severely compromised by the low content of miRNAs and the large amount of exosomal miRNAs released from normal cells. Here, we presented a dual-specific miRNA's logical recognition triggered by an entropy-driven catalysis (EDC)-enhanced system in exosomes for accurate detection of liver cancer-cell-derived exosomal miR-21 and miR-122. Taking advantage of the accurate analytical performance of the logic device, the excellent membrane penetration of gold nanoparticles, and the outstanding amplification ability of the EDC reaction, this method exhibits high sensitivity and selectivity for the detection of tumor-derived exosomal miRNAs in situ. Moreover, due to its excellent performance, this logic device can effectively distinguish liver cancer patients from healthy donors by determining the amount of cancer-cell-derived exosomal miRNAs. Overall, this strategy has great potential for analyzing various types of exosomes and provides a viable tool to improve the accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Bojun Liu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhao
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Chen
- Zhengzhou Key Laboratory of Criminal Science and Technology, Department of Criminal Science and Technology, Zhengzhou Police College, Zhengzhou 450053, China
| | - Mingqing Shi
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhi Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
11
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Liu X, Zhang X, Yao Y, Shi P, Zeng C, Zhang Q. Construction of DNA-based molecular circuits using normally open and normally closed switches driven by lambda exonuclease. NANOSCALE 2023; 15:7755-7764. [PMID: 37051702 DOI: 10.1039/d3nr00427a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
13
|
Yang Y, Cai X, Shi M, Zhang X, Pan Y, Zhang Y, Ju H, Cao P. Biomimetic retractable DNA nanocarrier with sensitive responsivity for efficient drug delivery and enhanced photothermal therapy. J Nanobiotechnology 2023; 21:46. [PMID: 36759831 PMCID: PMC9909879 DOI: 10.1186/s12951-023-01806-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The coalition of DNA nanotechnology with diversiform inorganic nanoparticles offers powerful tools for the design and construction of stimuli-responsive drug delivery systems with spatiotemporal controllability, but it remains challenging to achieve high-density oligonucleotides modification close to inorganic nanocores for their sensitive responsivity to optical or thermal signals. RESULTS Inspired by Actinia with retractable tentacles, here we design an artificial nano-Actinia consisted of collapsible DNA architectures attached on gold nanoparticle (AuNP) for efficient drug delivery and enhanced photothermal therapy. The collapsible spheroidal architectures are formed by the hybridization of long DNA strand produced in situ through rolling circle amplification with bundling DNA strands, and contain numerous double-helical segments for the intercalative binding of quercetin as the anti-cancer drug. Under 800-nm light irradiation, the photothermal conversion of AuNPs induces intensive localized heating, which unwinds the double helixes and leads to the disassembly of DNA nanospheres on the surface of AuNPs. The consequently released quercetin can inhibit the expression of heat shock protein 27 and decrease the thermal resistance of tumor cells, thus enhancing photothermal therapy efficacy. CONCLUSIONS By combining the deformable DNA nanostructures with gold nanocores, this Actinia-mimetic nanocarrier presents a promising tool for the development of DNA-AuNPs complex and opens a new horizon for the stimuli-responsive drug delivery.
Collapse
Affiliation(s)
- Yuanhuan Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Menglin Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, China.
| |
Collapse
|
14
|
Qi M, Shi P, Zhang X, Cui S, Liu Y, Zhou S, Zhang Q. Reconfigurable DNA triplex structure for pH responsive logic gates †. RSC Adv 2023; 13:9864-9870. [PMID: 36998523 PMCID: PMC10043996 DOI: 10.1039/d3ra00536d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The DNA triplex is a special DNA structure often used as a logic gate substrate due to its high stability, programmability, and pH responsiveness. However, multiple triplex structures with different C−G−C+ proportions must be introduced into existing triplex logic gates due to the numerous logic calculations involved. This requirement complicates circuit design and results in many reaction by-products, greatly restricting the construction of large-scale logic circuits. Thus, we designed a new reconfigurable DNA triplex structure (RDTS) and constructed the pH-responsive logic gates through its conformational change that uses two types of logic calculations, ‘AND’ and ‘OR’. The use of these logic calculations necessitates fewer substrates, further enhancing the extensibility of the logic circuit. This result is expected to promote the development of the triplex in molecular computing and facilitate the completion of large-scale computing networks. We constructed pH-responsive logic gates through substrate conformational change that uses two types of logic calculations, ‘AND’ and ‘OR’. Our logic gates necessitate fewer substrates when two types of logic calculations are needed.![]()
Collapse
Affiliation(s)
- Mingxuan Qi
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| |
Collapse
|
15
|
Abstract
Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
16
|
Lu H, Cai J, Fang Y, Ren M, Tan X, Jia F, Wang D, Zhang K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules 2022; 55:2235-2242. [PMID: 36187461 PMCID: PMC9521811 DOI: 10.1021/acs.macromol.1c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we demonstrate that macromonomers consisting of organics-soluble, chemically protected oligonucleotides (protDNA) and poly(ethylene glycol) (PEG) chains can be converted into bottlebrush polymers of distinct architectures via ring-opening metathesis polymerization (ROMP). Using a custom norbornene-containing phosphoramidite, two types of macromonomers were obtained: a linear norbornene-protDNA-PEG structure and a Y-shaped structure where the polymerizable norbornene group is situated at the junction where protDNA and PEG meet. With this strategy, the PEG chains can be placed either near the backbone of the bottlebrush or on its periphery, and in principle anywhere between these two extremes by adjusting the norbornene location, which makes this strategy attractive for constructing architecturally sophisticated oligonucleotide-containing copolymers.
Collapse
Affiliation(s)
- Hao Lu
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
17
|
Yu D, Yang J, Wang L, Chen M, Yang R, Zheng J. Engineering a dual-responsive, exosome-surface anchored DNA nanosensor for microenvironment monitoring in vivo. Chem Commun (Camb) 2022; 58:3661-3664. [PMID: 35224597 DOI: 10.1039/d1cc07070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose an azoreductase and pH dual-responsive amphiphilic pyramidal tetrahedral DNA probe to construct a circulating exosome-surface anchored nanosensor for microenvironment monitoring in vivo. Based on the shuttle behavior, biocompatibility of the exosomes, and easy synthesis and modification of nucleic acids, both in vitro and in vivo results demonstrate that this nanosensor has excellent performance for activatable O2 and pH imaging, and thus can distinguish disease areas from normal tissue areas. We expect it to be a useful tool for obtaining early abnormal fluctuations in the microenvironment, which is of great significance for the early detection of diseases.
Collapse
Affiliation(s)
- Dingwen Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Mingjian Chen
- Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410083, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| |
Collapse
|
18
|
Ma W, Sun H, Chen B, Jia R, Huang J, Cheng H, He X, Huang M, Wang K. Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells. Anal Chem 2021; 93:14552-14559. [PMID: 34677940 DOI: 10.1021/acs.analchem.1c03580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we subtly engineered a pH and membrane receptor dual-activatable aptamer therapeutic for bispecific tumor cell imaging and in situ drug release by utilizing a hairpin-contained i-motif as the acid-responsive element to be complementary with a tumor-targeted aptamer, named as an aptamer "molecule-doctor" (pH-Apt-MD). Specifically, the pH-Apt-MD consisted of two DNA strands, where the Apt-sgc8c was labeled with AF488 and Cy3 at its 5'- and 3'-end, respectively. The I-strand, a hairpin-contained i-motif, was complementary to the Apt-sgc8c strand partially, labeled with a BHQ2 in the middle, thus generating Cy3 with quenched fluorescence and only AF488-emitted fluorescence. The double-helix region of pH-Apt-MD was designed rich in GC bases, providing sites for doxorubicin (Dox) intercalation. Once target cells were encountered, the pH-Apt-MD disassembled due to the specific recognition of the aptamer and conformation change of the i-motif, with activated fluorescence resonance energy transfer (FRET) signals between AF488 and Cy3, accompanied by Dox release in situ. Benefiting from the design of the hairpin-contained i-motif, the pH-Apt-MD presented a narrow pH response range (pH 6.0-6.8) with a transition midpoint (pHT) of 6.50 ± 0.04. Furthermore, living cell studies revealed that the stimuli-responsive FRET signal activation of pH-Apt-MD was successfully achieved on the HCT116 cell surface with ultralow background and enhanced imaging contrast. Then, the cytotoxicity experiments proved that accurate drug release and cell killing were realized to target cells in an acidic microenvironment. As a facile double stimuli-responsive strategy, the pH-Apt-MD may hold great promise for application in precise diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Mingmin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|