1
|
Du Z, Cheng X, Yang X, Ran G, Liu H, He S, Hua Z. Sulfur occupancy-induced construction of ant-nest-like NiMo/CF(N) electrode for highly efficient hydrogen evolution. J Colloid Interface Sci 2025; 677:665-676. [PMID: 39116564 DOI: 10.1016/j.jcis.2024.07.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The microstructure of the electrocatalyst plays a critical role in the reaction efficiency and stability during electrochemical water splitting. Designing an efficient and stable electrocatalyst, further clarifying the synthesis mechanism, is still an important problem to be solved urgently. Inspired by the copper pyrometallurgy theory, an exceptionally active NiMo/CF(N) electrode, consisting of an ant-nest-like copper foam substrate (defined as CF(N)) and deposited NiMo layer, was fabricated for the alkaline hydrogen evolution reaction (HER). Our findings expounded the structure construction mechanism and highlighted the pivotal role of the spatial occupancy of sulfur atoms in the construction of the ant-nest-like structure. The NiMo/CF(N) composite, characterized by channels with a 2 μm diameter, showcases strong electronic interactions, increased catalytic active sites, enhanced electron/ion transport, and facilitated gas release during HER. Remarkably, NiMo/CF(N) demonstrates ultralow overpotentials of 21 mV to deliver a current density of 10 mA cm-2 in 1 M KOH. This electrode also exhibits outstanding durability, maintaining a current density of 200 mA cm-2 for 110 h, attributed to the chemical and structural integrity of its catalytic surface and the excellent mechanical properties of the electrode. This work advances the fundamental understanding of constructing micro/nano-structured electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Zhongde Du
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Cheng
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Yang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Gaojun Ran
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| | - Shiwei He
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhongsheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| |
Collapse
|
2
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Singh E, Kumar A, Lo SL. Advancing nanobubble technology for carbon-neutral water treatment and enhanced environmental sustainability. ENVIRONMENTAL RESEARCH 2024; 252:118980. [PMID: 38657850 DOI: 10.1016/j.envres.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Gaseous nanobubbles (NBs) with dimensions ranging from 1 to 1000 nm in the liquid phase have garnered significant interest due to their unique physicochemical characteristics, including specific surface area, low internal gas pressure, long-term stability, efficient mass transfer, interface potential, and free radical production. These remarkable properties have sparked considerable attention in the scientific community and industries alike. These hold immense promise for environmental applications, especially for carbon-neutral water remediation. Their long-lasting stability in aqueous systems and efficient mass transfer properties make them highly suitable for delivering gases in the vicinity of pollutants. This potential has prompted research into the use of NBs for targeted delivery of gases in contaminated water bodies, facilitating the degradation of harmful substances and advancing sustainable remediation practices. However, despite significant progress in understanding NBs physicochemical properties and potential applications, several challenges and knowledge gaps persist. This review thereby aims to summarize the current state of research on NBs environmental applications and potential for remediation. By discussing the generation processes, mechanisms, principles, and characterization techniques, it sheds light on the promising future of NBs in advancing environmental sustainability. It explores their role in improving oxygenation, aeration, and pollutant degradation in water systems. Finally, the review addresses future research perspectives, emphasizing the need to bridge knowledge gaps and overcome challenges to unlock the full potential of this frontier technology for enhanced environmental sustainability.
Collapse
Affiliation(s)
- Ekta Singh
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Aman Kumar
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Carbonization (STRIDE-C), National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
4
|
Wu R, Hu Z, Zhang H, Wang J, Qin C, Zhou Y. Bubbles in Porous Electrodes for Alkaline Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:721-733. [PMID: 38147650 DOI: 10.1021/acs.langmuir.3c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Porous electrodes with high specific surface areas have been commonly employed for alkaline water electrolysis. The gas bubbles generated in electrodes due to water electrolysis, however, can screen the reaction sites and hinder reactant transport, thereby deteriorating the performance of electrodes. Hence, an in-depth understanding of the behavior of bubbles in porous electrodes is of great importance. Nevertheless, since porous electrodes are opaque, direct observation of bubbles therein is still a challenge. In this work, we have successfully captured the behavior of bubbles in the pores at the side surfaces of nickel-based porous electrodes. Two types of porous electrodes are employed: the ones with straight pores along the gravitational direction and the ones with tortuous pores. In the porous electrodes with tortuous pores, the moving bubbles are prone to collide with the solid matrix, thereby leading to the accumulation of bubbles in the pores and hence bubble trapping. By contrast, in the porous electrodes with straight pores, bubbles are seldom trapped; and when two bubbles near the wall surfaces coalesce, the merged bubble can jump away from the wall surfaces, releasing more active surfaces for reaction. As a result, the porous electrodes with straight pores, although with lower specific surface areas, are superior to those with tortuous pores. The relationship among the pore structures of porous electrodes, bubble behavior, and electrode performance disclosed in this work provides deep insights into the design of porous electrodes.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihao Hu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haojing Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqing Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chaozhong Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Ye Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Cheng X, Du ZD, Ding Y, Li FY, Hua ZS, Liu H. Bubble Management for Electrolytic Water Splitting by Surface Engineering: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16994-17008. [PMID: 38050682 DOI: 10.1021/acs.langmuir.3c02477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
During electrocatalytic water splitting, the management of bubbles possesses great importance to reduce the overpotential and improve the stability of the electrode. Bubble evolution is accomplished by nucleation, growth, and detachment. The expanding nucleation sites, decreasing bubble size, and timely detachment of bubbles from the electrode surface are key factors in bubble management. Recently, the surface engineering of electrodes has emerged as a promising strategy for bubble management in practical water splitting due to its reliability and efficiency. In this review, we start with a discussion of the bubble behavior on the electrodes during water splitting. Then we summarize recent progress in the management of bubbles from the perspective of surface physical (electrocatalytic surface morphology) and surface chemical (surface composition) considerations, focusing on the surface texture design, three-dimensional construction, wettability coating technology, and functional group modification. Finally, we present the principles of bubble management, followed by an insightful perspective and critical challenges for further development.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-de Du
- School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Yu Ding
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Fu-Yu Li
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-Sheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| |
Collapse
|