1
|
Keo P, Yan T, Wang J, Zhang X, Shi Y, Jie J. Anchored epitaxial growth of single-oriented one-dimensional organic nanowires towards their integration into field-effect transistors and polarization-sensitive photodetector arrays. RSC Adv 2025; 15:9891-9898. [PMID: 40165916 PMCID: PMC11956851 DOI: 10.1039/d4ra08354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The deliberate assembly of organic small molecules into single-oriented one-dimensional (1D) nanowires is essential for the large-scale, on-chip integration of organic nanowire-based (opto)electronic devices. However, achieving single-oriented 1D organic nanowires remains a considerable challenge, predominantly attributed to the intricate nucleation and growth behaviors of the molecules. Herein, an anchored epitaxial growth method was developed to facilitate the single-oriented growth of 1D organic nanowires using the parallel nanogrooves on the annealed sapphire as anchoring seed crystal templates. The depth of the nanogrooves was greater than the length of the molecules, enabling the molecules to be embedded into the V-shaped nanogrooves and to form anchored nuclei during the physical vapor deposition process. Subsequently, these nuclei exhibited directional epitaxial growth along the nanogrooves, resulting in the formation of single-oriented 1D organic nanowires. Various organic small molecule 1D nanowires with uniform molecular packing and orientation were obtained and utilized for subsequent device integration. 2,7-Dioctyl[1]benzothiophene (C8-BTBT) was used as a model material, and the flexible organic field-effect transistor (OFET) based on the single C8-BTBT nanowire exhibited a mobility of up to 1.5 cm2 V-1 s-1. Benefiting from high mobility and uniform orientation, the integrated polarization-sensitive photodetector arrays based on 1D C8-BTBT nanowires exhibited a high dichroic ratio of up to 2.83, which was higher than those of some previously investigated 1D nanowires and two-dimensional materials. This work presents new opportunities to fabricate single-oriented 1D organic nanowires for integrated devices.
Collapse
Affiliation(s)
- Phetluengxay Keo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Tingyi Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jinwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| |
Collapse
|
2
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
3
|
Cao F, Liu Y, Liu M, Han Z, Xu X, Fan Q, Sun B. Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects. RESEARCH (WASHINGTON, D.C.) 2024; 7:0385. [PMID: 38803505 PMCID: PMC11128649 DOI: 10.34133/research.0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
Ultraviolet (UV) light, invisible to the human eye, possesses both benefits and risks. To harness its potential, UV photodetectors (PDs) have been engineered. These devices can convert UV photons into detectable signals, such as electrical impulses or visible light, enabling their application in diverse fields like environmental monitoring, healthcare, and aerospace. Wide bandgap semiconductors, with their high-efficiency UV light absorption and stable opto-electronic properties, stand out as ideal materials for UV PDs. This review comprehensively summarizes recent advancements in both traditional and emerging wide bandgap-based UV PDs, highlighting their roles in UV imaging, communication, and alarming. Moreover, it examines methods employed to enhance UV PD performance, delving into the advantages, challenges, and future research prospects in this area. By doing so, this review aims to spark innovation and guide the future development and application of UV PDs.
Collapse
Affiliation(s)
- Fa Cao
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Mei Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Zeyao Han
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Xiaobao Xu
- School of Electronic Science and Engineering,
Southeast University, Nanjing 210000, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| |
Collapse
|
4
|
Panda J, Sahu S, Haider G, Thakur MK, Mosina K, Velický M, Vejpravova J, Sofer Z, Kalbáč M. Polarization-Resolved Position-Sensitive Self-Powered Binary Photodetection in Multilayer Janus CrSBr. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1033-1043. [PMID: 38147583 PMCID: PMC10788859 DOI: 10.1021/acsami.3c13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Recent progress in polarization-resolved photodetection based on low-symmetry 2D materials has formed the basis of cutting-edge optoelectronic devices, including quantum optical communication, 3D image processing, and sensing applications. Here, we report an optical polarization-resolving photodetector (PD) fabricated from multilayer semiconducting CrSBr single crystals with high structural anisotropy. We have demonstrated self-powered photodetection due to the formation of Schottky junctions at the Au-CrSBr interfaces, which also caused the photocurrent to display a position-sensitive and binary nature. The self-biased CrSBr PD showed a photoresponsivity of ∼0.26 mA/W with a detectivity of 3.4 × 108 Jones at 514 nm excitation of fluency (0.42 mW/cm2) under ambient conditions. The optical polarization-induced photoresponse exhibits a large dichroic ratio of 3.4, while the polarization is set along the a- and the b-axes of single-crystalline CrSBr. The PD also showed excellent stability, retaining >95% of the initial photoresponsivity in ambient conditions for more than five months without encapsulation. Thus, we demonstrate CrSBr as a fascinating material for ultralow-powered optical polarization-resolving optoelectronic devices for cutting-edge technology.
Collapse
Affiliation(s)
- Jaganandha Panda
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Satyam Sahu
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Mukesh Kumar Thakur
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Matěj Velický
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Jana Vejpravova
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Dolejskova 3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
5
|
Gou R, Shi C, Zhou S, Huang Z, Ouyang Z, He S, Zhao J, Xiao Y, Lei S, Cheng B. Self-Powered Photodetector Based on Ag/CH 3NH 3PbI 3/C Asymmetric Dual-Terminal Device. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54863-54874. [PMID: 37966314 DOI: 10.1021/acsami.3c13839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
CH3NH3PbI3 is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through p-n junctions. In this study, we fabricated a Ag/CH3NH3PbI3/C dual-terminal asymmetric electrode device using a single CH3NH3PbI3 perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CH3NH3PbI3 to visible light. Compared with traditional p-n junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CH3NH3PbI3, resulting in superior self-powered characteristics. Under low bias voltage, the device achieves a significant on/off ratio of 103, with superior sensitivity and responsivity as well as a maximum rectification ratio of about 12. The photogenerated voltage and current reach approximately 0.8 V and 2 nA, respectively. This simple, compact, and self-powered asymmetric device exhibits great potential for applications in self-powered optoelectronics and wearable devices. This research provides a promising approach for recognizing and utilizing surface state effects in single nanoscale structures.
Collapse
Affiliation(s)
- Runna Gou
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Cencen Shi
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| | - Shuanfu Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Zhikang Huang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330038, P. R. China
| | - Song He
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
6
|
Diroll BT, Banerjee P, Shevchenko EV. Optical anisotropy of CsPbBr 3 perovskite nanoplatelets. NANO CONVERGENCE 2023; 10:18. [PMID: 37186268 PMCID: PMC10130288 DOI: 10.1186/s40580-023-00367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
The two-dimensional CsPbBr3 nanoplatelets have a quantum well electronic structure with a band gap tunable with sample thicknesses in discreet steps based upon the number of monolayers. The polarized optical properties of CsPbBr3 nanoplatelets are studied using fluorescence anisotropy and polarized transient absorption spectroscopies. Polarized spectroscopy shows that they have absorption and emission transitions which are strongly plane-polarized. In particular, photoluminescence excitation and transient absorption measurements reveal a band-edge polarization approaching 0.1, the limit of isotropic two-dimensional ensembles. The degree of anisotropy is found to depend on the thickness of the nanoplatelets: multiple measurements show a progressive decrease in optical anisotropy from 2 to 5 monolayer thick nanoplatelets. In turn, larger cuboidal CsPbBr3 nanocrystals, are found to have consistently positive anisotropy which may be attributed to symmetry breaking from ideal perovskite cubes. Optical measurements of anisotropy are described with respect to the theoretical framework developed to describe exciton fine structure in these materials. The observed planar absorption and emission are close to predicted values at thinner nanoplatelet sizes and follow the predicted trend in anisotropy with thickness, but with larger anisotropy than theoretical predictions. Dominant planar emission, albeit confined to the thinnest nanoplatelets, is a valuable attribute for enhanced efficiency of light-emitting devices.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA.
| | - Progna Banerjee
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60438, USA
| |
Collapse
|
7
|
Wang M, Cao F, Meng L, Wang M, Li L. Phase-Transition-Cycle-Induced Recrystallization of FAPbI3 Film in An Open Environment Toward Excellent Photodetectors with High Reproducibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204386. [PMID: 36253144 PMCID: PMC9731687 DOI: 10.1002/advs.202204386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Perovskite is an attractive building block for future optoelectronic applications. However, the strict fabrication conditions of perovskite devices impede the transformation of lab techniques into commercial applications. Here, a facile annealing-free posttreatment is proposed to reconstruct the perovskite film to obtain high-performance photodetectors with an optimized production rate. With posttreatment by methylamine thiocyanate, the prefabricated formamidinium-lead triiodide (FAPbI3 ) film will undergo a recrystallization process consisting of a repeating phase-transition-cycle (PTC) between the black and yellow phases of FAPbI3 , which improves the crystal quality and eliminates defects. As a result, some casually prepared or even decomposed perovskite films can be reconstructed, and the dispersion degree of the device performance based on the posttreatment method decreases by ≈21% compared to the traditional antisolvent method. This facile and annealing-free posttreatment will be an attractive method for the future industrial production of perovskite devices.
Collapse
Affiliation(s)
- Meng Wang
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006P. R. China
| | - Fengren Cao
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006P. R. China
| | - Linxing Meng
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006P. R. China
| | - Min Wang
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006P. R. China
| | - Liang Li
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006P. R. China
| |
Collapse
|
8
|
Ji Z, Liu Y, Zhao C, Wang ZL, Mai W. Perovskite Wide-Angle Field-Of-View Camera. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206957. [PMID: 36037081 DOI: 10.1002/adma.202206957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Researchers have attempted to create wide-angle field-of-view (FOV) cameras inspired by the structure of the eyes of animals, including fisheye and compound eye cameras. However, realizing wide-angle FOV cameras simultaneously exhibiting low distortion and high spatial resolution remains a significant challenge. In this study, a novel wide-angle FOV camera is developed by combining a single large-area flexible perovskite photodetector (FP-PD) using computational technology. With this camera, the proposed single-photodetector imaging technique can obtain high-spatial-resolution images using only a single detector, and the large-area FP-PD can be bent further to collect light from a wide-angle FOV. The proposed camera demonstrates remarkable features of an extraordinarily tunable wide FOV (greater than 150°), high spatial resolution of 256 × 256 pixels, and low distortion. It is believed that the proposed compatible and extensible camera prototype will promote the development of high-performance versatile FOV cameras.
Collapse
Affiliation(s)
- Zhong Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China
| | - Yujin Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chuanxi Zhao
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
9
|
Zhang S, Xiao K, Zhang Y, Ji Y, Wang J, Chen J. Polarization improvement of perovskite nanowire composite films by mechanical stretching method. NANOTECHNOLOGY 2022; 33:485602. [PMID: 35981442 DOI: 10.1088/1361-6528/ac8aa1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Perovskite nanowires (NWs) have attracted considerable interest because of their excellent polarization properties. In this work, we first synthesized colloidal lead halide CsPbBr3NWs with suitable lengths and excellent polarization performance by the method of the thermal injection. By embedding the NWs in polyvinyl alcohol (PVA) to prepare practical a polymer composite and combining it with the mechanical stretching method, we achieved films with higher polarizing properties. The optimized stretched composite film achieved a polarization degree of 0.4992, which is superior to that of the unstretched one. The stretched PVA molecules are arranged in a straight line, which absorbs the polarized light parallel to the alignment direction, and only allows the polarized light in the vertical direction to pass through. Therefore, the arrangement of the spin-coated NWs combined with the arrangement direction of the PVA molecules led to an improvement in the polarization performance of the composite film. The NWs-PVA-stretched composite films will show important application value in the manufacture of next-generation polarization-sensitive optoelectronic devices and other fields.
Collapse
Affiliation(s)
- Sihan Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Kaiwen Xiao
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yucong Ji
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jiaxin Wang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jun Chen
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
10
|
Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li XJ, Shan CX, Jie J. In Situ Fabrication of PdSe 2/GaN Schottky Junction for Polarization-Sensitive Ultraviolet Photodetection with High Dichroic Ratio. ACS NANO 2022; 16:5545-5555. [PMID: 35324154 DOI: 10.1021/acsnano.1c10181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive ultraviolet (UV) photodetection is of great technological importance for both civilian and military applications. Two-dimensional (2D) group-10 transition-metal dichalcogenides (TMDs), especially palladium diselenide (PdSe2), are promising candidates for polarized photodetection due to their low-symmetric crystal structure. However, the lack of an efficient heterostructure severely restricts their applications in UV-polarized photodetection. Here, we develop a PdSe2/GaN Schottky junction by in situ van der Waals growth for highly polarization-sensitive UV photodetection. Owing to the high-quality junction, the device exhibits an appealing UV detection performance in terms of a large responsivity of 249.9 mA/W, a high specific detectivity, and a fast response speed. More importantly, thanks to the puckered structure of the PdSe2 layer, the device is highly sensitive to polarized UV light with a large dichroic ratio up to 4.5, which is among the highest for 2D TMD material-based UV polarization-sensitive photodetectors. These findings further enable the demonstration of the outstanding polarized UV imaging capability of the Schottky junction, as well as its utility as an optical receiver for secure UV optical communication. Our work offers a strategy to fabricate the PdSe2-based heterostructure for high-performance polarization-sensitive UV photodetection.
Collapse
Affiliation(s)
- Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Xu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Longhui Zeng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhifeng Shi
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongzhi Tian
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Jian Li
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chong-Xin Shan
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiansheng Jie
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|